mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
6.6 KiB
200 lines
6.6 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
// #define GENERATE_TESTDATA |
|
|
|
namespace opencv_test { namespace { |
|
|
|
struct Activation |
|
{ |
|
int id; |
|
const char * name; |
|
}; |
|
void PrintTo(const Activation &a, std::ostream *os) { *os << a.name; } |
|
|
|
Activation activation_list[] = |
|
{ |
|
{ ml::ANN_MLP::IDENTITY, "identity" }, |
|
{ ml::ANN_MLP::SIGMOID_SYM, "sigmoid_sym" }, |
|
{ ml::ANN_MLP::GAUSSIAN, "gaussian" }, |
|
{ ml::ANN_MLP::RELU, "relu" }, |
|
{ ml::ANN_MLP::LEAKYRELU, "leakyrelu" }, |
|
}; |
|
|
|
typedef testing::TestWithParam< Activation > ML_ANN_Params; |
|
|
|
TEST_P(ML_ANN_Params, ActivationFunction) |
|
{ |
|
const Activation &activation = GetParam(); |
|
const string dataname = "waveform"; |
|
const string data_path = findDataFile(dataname + ".data"); |
|
const string model_name = dataname + "_" + activation.name + ".yml"; |
|
|
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(data_path, 0); |
|
ASSERT_FALSE(tdata.empty()); |
|
|
|
// hack? |
|
const uint64 old_state = theRNG().state; |
|
theRNG().state = 1027401484159173092; |
|
tdata->setTrainTestSplit(500); |
|
theRNG().state = old_state; |
|
|
|
Mat_<int> layerSizes(1, 4); |
|
layerSizes(0, 0) = tdata->getNVars(); |
|
layerSizes(0, 1) = 100; |
|
layerSizes(0, 2) = 100; |
|
layerSizes(0, 3) = tdata->getResponses().cols; |
|
|
|
Mat testSamples = tdata->getTestSamples(); |
|
Mat rx, ry; |
|
|
|
{ |
|
Ptr<ml::ANN_MLP> x = ml::ANN_MLP::create(); |
|
x->setActivationFunction(activation.id); |
|
x->setLayerSizes(layerSizes); |
|
x->setTrainMethod(ml::ANN_MLP::RPROP, 0.01, 0.1); |
|
x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 300, 0.01)); |
|
x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE); |
|
ASSERT_TRUE(x->isTrained()); |
|
x->predict(testSamples, rx); |
|
#ifdef GENERATE_TESTDATA |
|
x->save(cvtest::TS::ptr()->get_data_path() + model_name); |
|
#endif |
|
} |
|
|
|
{ |
|
const string model_path = findDataFile(model_name); |
|
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(model_path); |
|
ASSERT_TRUE(y); |
|
y->predict(testSamples, ry); |
|
EXPECT_MAT_NEAR(rx, ry, FLT_EPSILON); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, ML_ANN_Params, testing::ValuesIn(activation_list)); |
|
|
|
//================================================================================================== |
|
|
|
CV_ENUM(ANN_MLP_METHOD, ANN_MLP::RPROP, ANN_MLP::ANNEAL) |
|
|
|
typedef tuple<ANN_MLP_METHOD, string, int> ML_ANN_METHOD_Params; |
|
typedef TestWithParam<ML_ANN_METHOD_Params> ML_ANN_METHOD; |
|
|
|
TEST_P(ML_ANN_METHOD, Test) |
|
{ |
|
int methodType = get<0>(GetParam()); |
|
string methodName = get<1>(GetParam()); |
|
int N = get<2>(GetParam()); |
|
|
|
String folder = string(cvtest::TS::ptr()->get_data_path()); |
|
String original_path = findDataFile("waveform.data"); |
|
string dataname = "waveform_" + methodName; |
|
string weight_name = dataname + "_init_weight.yml.gz"; |
|
string model_name = dataname + ".yml.gz"; |
|
string response_name = dataname + "_response.yml.gz"; |
|
|
|
Ptr<TrainData> tdata2 = TrainData::loadFromCSV(original_path, 0); |
|
ASSERT_FALSE(tdata2.empty()); |
|
|
|
Mat samples = tdata2->getSamples()(Range(0, N), Range::all()); |
|
Mat responses(N, 3, CV_32FC1, Scalar(0)); |
|
for (int i = 0; i < N; i++) |
|
responses.at<float>(i, static_cast<int>(tdata2->getResponses().at<float>(i, 0))) = 1; |
|
|
|
Ptr<TrainData> tdata = TrainData::create(samples, ml::ROW_SAMPLE, responses); |
|
ASSERT_FALSE(tdata.empty()); |
|
|
|
// hack? |
|
const uint64 old_state = theRNG().state; |
|
theRNG().state = 0; |
|
tdata->setTrainTestSplitRatio(0.8); |
|
theRNG().state = old_state; |
|
|
|
Mat testSamples = tdata->getTestSamples(); |
|
|
|
// train 1st stage |
|
|
|
Ptr<ml::ANN_MLP> xx = ml::ANN_MLP::create(); |
|
Mat_<int> layerSizes(1, 4); |
|
layerSizes(0, 0) = tdata->getNVars(); |
|
layerSizes(0, 1) = 30; |
|
layerSizes(0, 2) = 30; |
|
layerSizes(0, 3) = tdata->getResponses().cols; |
|
xx->setLayerSizes(layerSizes); |
|
xx->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM); |
|
xx->setTrainMethod(ml::ANN_MLP::RPROP); |
|
xx->setTermCriteria(TermCriteria(TermCriteria::COUNT, 1, 0.01)); |
|
xx->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE); |
|
#ifdef GENERATE_TESTDATA |
|
{ |
|
FileStorage fs; |
|
fs.open(cvtest::TS::ptr()->get_data_path() + weight_name, FileStorage::WRITE + FileStorage::BASE64); |
|
xx->write(fs); |
|
} |
|
#endif |
|
|
|
// train 2nd stage |
|
Mat r_gold; |
|
Ptr<ml::ANN_MLP> x = ml::ANN_MLP::create(); |
|
{ |
|
const string weight_file = findDataFile(weight_name); |
|
FileStorage fs; |
|
fs.open(weight_file, FileStorage::READ); |
|
x->read(fs.root()); |
|
} |
|
x->setTrainMethod(methodType); |
|
if (methodType == ml::ANN_MLP::ANNEAL) |
|
{ |
|
x->setAnnealEnergyRNG(RNG(CV_BIG_INT(0xffffffff))); |
|
x->setAnnealInitialT(12); |
|
x->setAnnealFinalT(0.15); |
|
x->setAnnealCoolingRatio(0.96); |
|
x->setAnnealItePerStep(11); |
|
} |
|
x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 100, 0.01)); |
|
x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE + ml::ANN_MLP::UPDATE_WEIGHTS); |
|
ASSERT_TRUE(x->isTrained()); |
|
#ifdef GENERATE_TESTDATA |
|
x->save(cvtest::TS::ptr()->get_data_path() + model_name); |
|
x->predict(testSamples, r_gold); |
|
{ |
|
FileStorage fs_response(cvtest::TS::ptr()->get_data_path() + response_name, FileStorage::WRITE + FileStorage::BASE64); |
|
fs_response << "response" << r_gold; |
|
} |
|
#endif |
|
{ |
|
const string response_file = findDataFile(response_name); |
|
FileStorage fs_response(response_file, FileStorage::READ); |
|
fs_response["response"] >> r_gold; |
|
} |
|
ASSERT_FALSE(r_gold.empty()); |
|
|
|
// verify |
|
const string model_file = findDataFile(model_name); |
|
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(model_file); |
|
ASSERT_TRUE(y); |
|
Mat rx, ry; |
|
for (int j = 0; j < 4; j++) |
|
{ |
|
rx = x->getWeights(j); |
|
ry = y->getWeights(j); |
|
EXPECT_MAT_NEAR(rx, ry, FLT_EPSILON) << "Weights are not equal for layer: " << j; |
|
} |
|
x->predict(testSamples, rx); |
|
y->predict(testSamples, ry); |
|
EXPECT_MAT_NEAR(ry, rx, FLT_EPSILON) << "Predict are not equal to result of the saved model"; |
|
EXPECT_MAT_NEAR(r_gold, rx, FLT_EPSILON) << "Predict are not equal to 'gold' response"; |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/*none*/, ML_ANN_METHOD, |
|
testing::Values( |
|
ML_ANN_METHOD_Params(ml::ANN_MLP::RPROP, "rprop", 5000), |
|
ML_ANN_METHOD_Params(ml::ANN_MLP::ANNEAL, "anneal", 1000) |
|
// ML_ANN_METHOD_Params(ml::ANN_MLP::BACKPROP, "backprop", 500) -----> NO BACKPROP TEST |
|
) |
|
); |
|
|
|
}} // namespace
|
|
|