Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

341 lines
14 KiB

#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
class test_gapi_infer(NewOpenCVTests):
def infer_reference_network(self, model_path, weights_path, img):
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
net.setInput(blob)
return net.forward(net.getUnconnectedOutLayersNames())
def make_roi(self, img, roi):
return img[roi[1]:roi[1] + roi[3], roi[0]:roi[0] + roi[2], ...]
def test_age_gender_infer(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.resize(cv.imread(img_path), (62,62))
# OpenCV DNN
dnn_age, dnn_gender = self.infer_reference_network(model_path, weights_path, img)
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer_roi(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
roi = (10, 10, 62, 62)
# OpenCV DNN
dnn_age, dnn_gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
# OpenCV G-API
g_in = cv.GMat()
g_roi = cv.GOpaqueT(cv.gapi.CV_RECT)
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", g_roi, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_roi), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img, roi), args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer_roi_list(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
# OpenCV DNN
dnn_age_list = []
dnn_gender_list = []
for roi in rois:
age, gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
dnn_age_list.append(age)
dnn_gender_list.append(gender)
# OpenCV G-API
g_in = cv.GMat()
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", g_rois, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
gapi_gender_list,
dnn_age_list,
dnn_gender_list):
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer2_roi(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
# OpenCV DNN
dnn_age_list = []
dnn_gender_list = []
for roi in rois:
age, gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
dnn_age_list.append(age)
dnn_gender_list.append(gender)
# OpenCV G-API
g_in = cv.GMat()
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
inputs = cv.GInferListInputs()
inputs.setInput('data', g_rois)
outputs = cv.gapi.infer2("net", g_in, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
gapi_gender_list,
dnn_age_list,
dnn_gender_list):
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_person_detection_retail_0013(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (544, 320))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
def parseSSD(detections, size):
h, w = size
bboxes = []
detections = detections.reshape(-1, 7)
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
if confidence >= 0.5:
x = int(xmin * w)
y = int(ymin * h)
width = int(xmax * w - x)
height = int(ymax * h - y)
bboxes.append((x, y, width, height))
return bboxes
net.setInput(blob)
dnn_detections = net.forward()
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
g_sz = cv.gapi.streaming.size(g_in)
outputs = cv.gapi.infer("net", inputs)
detections = outputs.at("detection_out")
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Comparison
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
np.array(gapi_boxes).flatten(),
cv.NORM_INF))
def test_person_detection_retail_0013(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (544, 320))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
def parseSSD(detections, size):
h, w = size
bboxes = []
detections = detections.reshape(-1, 7)
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
if confidence >= 0.5:
x = int(xmin * w)
y = int(ymin * h)
width = int(xmax * w - x)
height = int(ymax * h - y)
bboxes.append((x, y, width, height))
return bboxes
net.setInput(blob)
dnn_detections = net.forward()
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
g_sz = cv.gapi.streaming.size(g_in)
outputs = cv.gapi.infer("net", inputs)
detections = outputs.at("detection_out")
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Comparison
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
np.array(gapi_boxes).flatten(),
cv.NORM_INF))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()