mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
341 lines
14 KiB
341 lines
14 KiB
#!/usr/bin/env python |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
import os |
|
import sys |
|
import unittest |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
|
|
try: |
|
|
|
if sys.version_info[:2] < (3, 0): |
|
raise unittest.SkipTest('Python 2.x is not supported') |
|
|
|
|
|
class test_gapi_infer(NewOpenCVTests): |
|
|
|
def infer_reference_network(self, model_path, weights_path, img): |
|
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path) |
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) |
|
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) |
|
|
|
blob = cv.dnn.blobFromImage(img) |
|
|
|
net.setInput(blob) |
|
return net.forward(net.getUnconnectedOutLayersNames()) |
|
|
|
|
|
def make_roi(self, img, roi): |
|
return img[roi[1]:roi[1] + roi[3], roi[0]:roi[0] + roi[2], ...] |
|
|
|
|
|
def test_age_gender_infer(self): |
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
|
|
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
img = cv.resize(cv.imread(img_path), (62,62)) |
|
|
|
# OpenCV DNN |
|
dnn_age, dnn_gender = self.infer_reference_network(model_path, weights_path, img) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
inputs = cv.GInferInputs() |
|
inputs.setInput('data', g_in) |
|
|
|
outputs = cv.gapi.infer("net", inputs) |
|
age_g = outputs.at("age_conv3") |
|
gender_g = outputs.at("prob") |
|
|
|
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.gapi.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Check |
|
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF)) |
|
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF)) |
|
|
|
|
|
def test_age_gender_infer_roi(self): |
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
|
|
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
img = cv.imread(img_path) |
|
roi = (10, 10, 62, 62) |
|
|
|
# OpenCV DNN |
|
dnn_age, dnn_gender = self.infer_reference_network(model_path, |
|
weights_path, |
|
self.make_roi(img, roi)) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
g_roi = cv.GOpaqueT(cv.gapi.CV_RECT) |
|
inputs = cv.GInferInputs() |
|
inputs.setInput('data', g_in) |
|
|
|
outputs = cv.gapi.infer("net", g_roi, inputs) |
|
age_g = outputs.at("age_conv3") |
|
gender_g = outputs.at("prob") |
|
|
|
comp = cv.GComputation(cv.GIn(g_in, g_roi), cv.GOut(age_g, gender_g)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_age, gapi_gender = comp.apply(cv.gin(img, roi), args=cv.gapi.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Check |
|
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF)) |
|
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF)) |
|
|
|
|
|
def test_age_gender_infer_roi_list(self): |
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
|
|
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)] |
|
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
img = cv.imread(img_path) |
|
|
|
# OpenCV DNN |
|
dnn_age_list = [] |
|
dnn_gender_list = [] |
|
for roi in rois: |
|
age, gender = self.infer_reference_network(model_path, |
|
weights_path, |
|
self.make_roi(img, roi)) |
|
dnn_age_list.append(age) |
|
dnn_gender_list.append(gender) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
g_rois = cv.GArrayT(cv.gapi.CV_RECT) |
|
inputs = cv.GInferInputs() |
|
inputs.setInput('data', g_in) |
|
|
|
outputs = cv.gapi.infer("net", g_rois, inputs) |
|
age_g = outputs.at("age_conv3") |
|
gender_g = outputs.at("prob") |
|
|
|
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois), |
|
args=cv.gapi.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Check |
|
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list, |
|
gapi_gender_list, |
|
dnn_age_list, |
|
dnn_gender_list): |
|
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF)) |
|
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF)) |
|
|
|
|
|
def test_age_gender_infer2_roi(self): |
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
|
|
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)] |
|
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
img = cv.imread(img_path) |
|
|
|
# OpenCV DNN |
|
dnn_age_list = [] |
|
dnn_gender_list = [] |
|
for roi in rois: |
|
age, gender = self.infer_reference_network(model_path, |
|
weights_path, |
|
self.make_roi(img, roi)) |
|
dnn_age_list.append(age) |
|
dnn_gender_list.append(gender) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
g_rois = cv.GArrayT(cv.gapi.CV_RECT) |
|
inputs = cv.GInferListInputs() |
|
inputs.setInput('data', g_rois) |
|
|
|
outputs = cv.gapi.infer2("net", g_in, inputs) |
|
age_g = outputs.at("age_conv3") |
|
gender_g = outputs.at("prob") |
|
|
|
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois), |
|
args=cv.gapi.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Check |
|
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list, |
|
gapi_gender_list, |
|
dnn_age_list, |
|
dnn_gender_list): |
|
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF)) |
|
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF)) |
|
|
|
|
|
|
|
def test_person_detection_retail_0013(self): |
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
img = cv.resize(cv.imread(img_path), (544, 320)) |
|
|
|
# OpenCV DNN |
|
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path) |
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) |
|
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) |
|
|
|
blob = cv.dnn.blobFromImage(img) |
|
|
|
def parseSSD(detections, size): |
|
h, w = size |
|
bboxes = [] |
|
detections = detections.reshape(-1, 7) |
|
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections: |
|
if confidence >= 0.5: |
|
x = int(xmin * w) |
|
y = int(ymin * h) |
|
width = int(xmax * w - x) |
|
height = int(ymax * h - y) |
|
bboxes.append((x, y, width, height)) |
|
|
|
return bboxes |
|
|
|
net.setInput(blob) |
|
dnn_detections = net.forward() |
|
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2]) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
inputs = cv.GInferInputs() |
|
inputs.setInput('data', g_in) |
|
|
|
g_sz = cv.gapi.streaming.size(g_in) |
|
outputs = cv.gapi.infer("net", inputs) |
|
detections = outputs.at("detection_out") |
|
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False) |
|
|
|
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)), |
|
args=cv.gapi.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Comparison |
|
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(), |
|
np.array(gapi_boxes).flatten(), |
|
cv.NORM_INF)) |
|
|
|
|
|
def test_person_detection_retail_0013(self): |
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
img = cv.resize(cv.imread(img_path), (544, 320)) |
|
|
|
# OpenCV DNN |
|
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path) |
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) |
|
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) |
|
|
|
blob = cv.dnn.blobFromImage(img) |
|
|
|
def parseSSD(detections, size): |
|
h, w = size |
|
bboxes = [] |
|
detections = detections.reshape(-1, 7) |
|
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections: |
|
if confidence >= 0.5: |
|
x = int(xmin * w) |
|
y = int(ymin * h) |
|
width = int(xmax * w - x) |
|
height = int(ymax * h - y) |
|
bboxes.append((x, y, width, height)) |
|
|
|
return bboxes |
|
|
|
net.setInput(blob) |
|
dnn_detections = net.forward() |
|
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2]) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
inputs = cv.GInferInputs() |
|
inputs.setInput('data', g_in) |
|
|
|
g_sz = cv.gapi.streaming.size(g_in) |
|
outputs = cv.gapi.infer("net", inputs) |
|
detections = outputs.at("detection_out") |
|
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False) |
|
|
|
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)), |
|
args=cv.gapi.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Comparison |
|
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(), |
|
np.array(gapi_boxes).flatten(), |
|
cv.NORM_INF)) |
|
|
|
|
|
except unittest.SkipTest as e: |
|
|
|
message = str(e) |
|
|
|
class TestSkip(unittest.TestCase): |
|
def setUp(self): |
|
self.skipTest('Skip tests: ' + message) |
|
|
|
def test_skip(): |
|
pass |
|
|
|
pass |
|
|
|
|
|
if __name__ == '__main__': |
|
NewOpenCVTests.bootstrap()
|
|
|