mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
369 lines
15 KiB
369 lines
15 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
using namespace std; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_nogpu(); } |
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_nogpu(); } |
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_nogpu(); } |
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace stereobp |
|
{ |
|
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump); |
|
template<typename T, typename D> |
|
void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream); |
|
template<typename T> |
|
void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); |
|
template <typename T> |
|
void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); |
|
template <typename T> |
|
void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, |
|
const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); |
|
template <typename T> |
|
void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, |
|
const PtrStepSz<short>& disp, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
using namespace ::cv::gpu::device::stereobp; |
|
|
|
namespace |
|
{ |
|
const float DEFAULT_MAX_DATA_TERM = 10.0f; |
|
const float DEFAULT_DATA_WEIGHT = 0.07f; |
|
const float DEFAULT_MAX_DISC_TERM = 1.7f; |
|
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; |
|
} |
|
|
|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels) |
|
{ |
|
ndisp = width / 4; |
|
if ((ndisp & 1) != 0) |
|
ndisp++; |
|
|
|
int mm = ::max(width, height); |
|
iters = mm / 100 + 2; |
|
|
|
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5; |
|
if (levels == 0) levels++; |
|
} |
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) |
|
: ndisp(ndisp_), iters(iters_), levels(levels_), |
|
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), |
|
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), |
|
msg_type(msg_type_), datas(levels_) |
|
{ |
|
} |
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) |
|
: ndisp(ndisp_), iters(iters_), levels(levels_), |
|
max_data_term(max_data_term_), data_weight(data_weight_), |
|
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), |
|
msg_type(msg_type_), datas(levels_) |
|
{ |
|
} |
|
|
|
namespace |
|
{ |
|
class StereoBeliefPropagationImpl |
|
{ |
|
public: |
|
StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_, |
|
GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_, |
|
GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_, |
|
vector<GpuMat>& datas_, GpuMat& out_) |
|
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_), |
|
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f) |
|
{ |
|
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels); |
|
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S); |
|
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max()); |
|
} |
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) |
|
{ |
|
typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream); |
|
static const comp_data_t comp_data_callers[2][5] = |
|
{ |
|
{0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>}, |
|
{0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>} |
|
}; |
|
|
|
CV_Assert(left.size() == right.size() && left.type() == right.type()); |
|
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4); |
|
|
|
rows = left.rows; |
|
cols = left.cols; |
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
|
int lowest_cols = cols / divisor; |
|
int lowest_rows = rows / divisor; |
|
const int min_image_dim_size = 2; |
|
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); |
|
|
|
init(stream); |
|
|
|
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream)); |
|
|
|
calcBP(disp, stream); |
|
} |
|
|
|
void operator()(const GpuMat& data, GpuMat& disp, Stream& stream) |
|
{ |
|
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0)); |
|
|
|
rows = data.rows / rthis.ndisp; |
|
cols = data.cols; |
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f); |
|
int lowest_cols = cols / divisor; |
|
int lowest_rows = rows / divisor; |
|
const int min_image_dim_size = 2; |
|
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); |
|
|
|
init(stream); |
|
|
|
datas[0] = data; |
|
|
|
calcBP(disp, stream); |
|
} |
|
private: |
|
void init(Stream& stream) |
|
{ |
|
u.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
d.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
l.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
r.create(rows * rthis.ndisp, cols, rthis.msg_type); |
|
|
|
if (rthis.levels & 1) |
|
{ |
|
//can clear less area |
|
if (stream) |
|
{ |
|
stream.enqueueMemSet(u, zero); |
|
stream.enqueueMemSet(d, zero); |
|
stream.enqueueMemSet(l, zero); |
|
stream.enqueueMemSet(r, zero); |
|
} |
|
else |
|
{ |
|
u.setTo(zero); |
|
d.setTo(zero); |
|
l.setTo(zero); |
|
r.setTo(zero); |
|
} |
|
} |
|
|
|
if (rthis.levels > 1) |
|
{ |
|
int less_rows = (rows + 1) / 2; |
|
int less_cols = (cols + 1) / 2; |
|
|
|
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); |
|
|
|
if ((rthis.levels & 1) == 0) |
|
{ |
|
if (stream) |
|
{ |
|
stream.enqueueMemSet(u2, zero); |
|
stream.enqueueMemSet(d2, zero); |
|
stream.enqueueMemSet(l2, zero); |
|
stream.enqueueMemSet(r2, zero); |
|
} |
|
else |
|
{ |
|
u2.setTo(zero); |
|
d2.setTo(zero); |
|
l2.setTo(zero); |
|
r2.setTo(zero); |
|
} |
|
} |
|
} |
|
|
|
load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump); |
|
|
|
datas.resize(rthis.levels); |
|
|
|
cols_all.resize(rthis.levels); |
|
rows_all.resize(rthis.levels); |
|
|
|
cols_all[0] = cols; |
|
rows_all[0] = rows; |
|
} |
|
|
|
void calcBP(GpuMat& disp, Stream& stream) |
|
{ |
|
typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); |
|
static const data_step_down_t data_step_down_callers[2] = |
|
{ |
|
data_step_down_gpu<short>, data_step_down_gpu<float> |
|
}; |
|
|
|
typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); |
|
static const level_up_messages_t level_up_messages_callers[2] = |
|
{ |
|
level_up_messages_gpu<short>, level_up_messages_gpu<float> |
|
}; |
|
|
|
typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); |
|
static const calc_all_iterations_t calc_all_iterations_callers[2] = |
|
{ |
|
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float> |
|
}; |
|
|
|
typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream); |
|
static const output_t output_callers[2] = |
|
{ |
|
output_gpu<short>, output_gpu<float> |
|
}; |
|
|
|
const int funcIdx = rthis.msg_type == CV_32F; |
|
|
|
cudaStream_t cudaStream = StreamAccessor::getStream(stream); |
|
|
|
for (int i = 1; i < rthis.levels; ++i) |
|
{ |
|
cols_all[i] = (cols_all[i-1] + 1) / 2; |
|
rows_all[i] = (rows_all[i-1] + 1) / 2; |
|
|
|
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type); |
|
|
|
data_step_down_callers[funcIdx](cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], cudaStream); |
|
} |
|
|
|
PtrStepSzb mus[] = {u, u2}; |
|
PtrStepSzb mds[] = {d, d2}; |
|
PtrStepSzb mrs[] = {r, r2}; |
|
PtrStepSzb mls[] = {l, l2}; |
|
|
|
int mem_idx = (rthis.levels & 1) ? 0 : 1; |
|
|
|
for (int i = rthis.levels - 1; i >= 0; --i) |
|
{ |
|
// for lower level we have already computed messages by setting to zero |
|
if (i != rthis.levels - 1) |
|
level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream); |
|
|
|
calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream); |
|
|
|
mem_idx = (mem_idx + 1) & 1; |
|
} |
|
|
|
if (disp.empty()) |
|
disp.create(rows, cols, CV_16S); |
|
|
|
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); |
|
|
|
if (stream) |
|
stream.enqueueMemSet(out, zero); |
|
else |
|
out.setTo(zero); |
|
|
|
output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream); |
|
|
|
if (disp.type() != CV_16S) |
|
{ |
|
if (stream) |
|
stream.enqueueConvert(out, disp, disp.type()); |
|
else |
|
out.convertTo(disp, disp.type()); |
|
} |
|
} |
|
|
|
StereoBeliefPropagation& rthis; |
|
|
|
GpuMat& u; |
|
GpuMat& d; |
|
GpuMat& l; |
|
GpuMat& r; |
|
|
|
GpuMat& u2; |
|
GpuMat& d2; |
|
GpuMat& l2; |
|
GpuMat& r2; |
|
|
|
vector<GpuMat>& datas; |
|
GpuMat& out; |
|
|
|
const Scalar zero; |
|
const float scale; |
|
|
|
int rows, cols; |
|
|
|
vector<int> cols_all, rows_all; |
|
}; |
|
} |
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) |
|
{ |
|
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
|
impl(left, right, disp, stream); |
|
} |
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream) |
|
{ |
|
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); |
|
impl(data, disp, stream); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|