Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
520 lines
16 KiB
520 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "kdtree.hpp" |
|
|
|
/****************************************************************************************\ |
|
* K-Nearest Neighbors Classifier * |
|
\****************************************************************************************/ |
|
|
|
namespace cv { |
|
namespace ml { |
|
|
|
const String NAME_BRUTE_FORCE = "opencv_ml_knn"; |
|
const String NAME_KDTREE = "opencv_ml_knn_kd"; |
|
|
|
class Impl |
|
{ |
|
public: |
|
Impl() |
|
{ |
|
defaultK = 10; |
|
isclassifier = true; |
|
Emax = INT_MAX; |
|
} |
|
|
|
virtual ~Impl() {} |
|
virtual String getModelName() const = 0; |
|
virtual int getType() const = 0; |
|
virtual float findNearest( InputArray _samples, int k, |
|
OutputArray _results, |
|
OutputArray _neighborResponses, |
|
OutputArray _dists ) const = 0; |
|
|
|
bool train( const Ptr<TrainData>& data, int flags ) |
|
{ |
|
Mat new_samples = data->getTrainSamples(ROW_SAMPLE); |
|
Mat new_responses; |
|
data->getTrainResponses().convertTo(new_responses, CV_32F); |
|
bool update = (flags & ml::KNearest::UPDATE_MODEL) != 0 && !samples.empty(); |
|
|
|
CV_Assert( new_samples.type() == CV_32F ); |
|
|
|
if( !update ) |
|
{ |
|
clear(); |
|
} |
|
else |
|
{ |
|
CV_Assert( new_samples.cols == samples.cols && |
|
new_responses.cols == responses.cols ); |
|
} |
|
|
|
samples.push_back(new_samples); |
|
responses.push_back(new_responses); |
|
|
|
doTrain(samples); |
|
|
|
return true; |
|
} |
|
|
|
virtual void doTrain(InputArray points) { (void)points; } |
|
|
|
void clear() |
|
{ |
|
samples.release(); |
|
responses.release(); |
|
} |
|
|
|
void read( const FileNode& fn ) |
|
{ |
|
clear(); |
|
isclassifier = (int)fn["is_classifier"] != 0; |
|
defaultK = (int)fn["default_k"]; |
|
|
|
fn["samples"] >> samples; |
|
fn["responses"] >> responses; |
|
} |
|
|
|
void write( FileStorage& fs ) const |
|
{ |
|
fs << "is_classifier" << (int)isclassifier; |
|
fs << "default_k" << defaultK; |
|
|
|
fs << "samples" << samples; |
|
fs << "responses" << responses; |
|
} |
|
|
|
public: |
|
int defaultK; |
|
bool isclassifier; |
|
int Emax; |
|
|
|
Mat samples; |
|
Mat responses; |
|
}; |
|
|
|
class BruteForceImpl CV_FINAL : public Impl |
|
{ |
|
public: |
|
String getModelName() const CV_OVERRIDE { return NAME_BRUTE_FORCE; } |
|
int getType() const CV_OVERRIDE { return ml::KNearest::BRUTE_FORCE; } |
|
|
|
void findNearestCore( const Mat& _samples, int k0, const Range& range, |
|
Mat* results, Mat* neighbor_responses, |
|
Mat* dists, float* presult ) const |
|
{ |
|
int testidx, baseidx, i, j, d = samples.cols, nsamples = samples.rows; |
|
int testcount = range.end - range.start; |
|
int k = std::min(k0, nsamples); |
|
|
|
AutoBuffer<float> buf(testcount*k*2); |
|
float* dbuf = buf.data(); |
|
float* rbuf = dbuf + testcount*k; |
|
|
|
const float* rptr = responses.ptr<float>(); |
|
|
|
for( testidx = 0; testidx < testcount; testidx++ ) |
|
{ |
|
for( i = 0; i < k; i++ ) |
|
{ |
|
dbuf[testidx*k + i] = FLT_MAX; |
|
rbuf[testidx*k + i] = 0.f; |
|
} |
|
} |
|
|
|
for( baseidx = 0; baseidx < nsamples; baseidx++ ) |
|
{ |
|
for( testidx = 0; testidx < testcount; testidx++ ) |
|
{ |
|
const float* v = samples.ptr<float>(baseidx); |
|
const float* u = _samples.ptr<float>(testidx + range.start); |
|
|
|
float s = 0; |
|
for( i = 0; i <= d - 4; i += 4 ) |
|
{ |
|
float t0 = u[i] - v[i], t1 = u[i+1] - v[i+1]; |
|
float t2 = u[i+2] - v[i+2], t3 = u[i+3] - v[i+3]; |
|
s += t0*t0 + t1*t1 + t2*t2 + t3*t3; |
|
} |
|
|
|
for( ; i < d; i++ ) |
|
{ |
|
float t0 = u[i] - v[i]; |
|
s += t0*t0; |
|
} |
|
|
|
Cv32suf si; |
|
si.f = (float)s; |
|
Cv32suf* dd = (Cv32suf*)(&dbuf[testidx*k]); |
|
float* nr = &rbuf[testidx*k]; |
|
|
|
for( i = k; i > 0; i-- ) |
|
if( si.i >= dd[i-1].i ) |
|
break; |
|
if( i >= k ) |
|
continue; |
|
|
|
for( j = k-2; j >= i; j-- ) |
|
{ |
|
dd[j+1].i = dd[j].i; |
|
nr[j+1] = nr[j]; |
|
} |
|
dd[i].i = si.i; |
|
nr[i] = rptr[baseidx]; |
|
} |
|
} |
|
|
|
float result = 0.f; |
|
float inv_scale = 1.f/k; |
|
|
|
for( testidx = 0; testidx < testcount; testidx++ ) |
|
{ |
|
if( neighbor_responses ) |
|
{ |
|
float* nr = neighbor_responses->ptr<float>(testidx + range.start); |
|
for( j = 0; j < k; j++ ) |
|
nr[j] = rbuf[testidx*k + j]; |
|
for( ; j < k0; j++ ) |
|
nr[j] = 0.f; |
|
} |
|
|
|
if( dists ) |
|
{ |
|
float* dptr = dists->ptr<float>(testidx + range.start); |
|
for( j = 0; j < k; j++ ) |
|
dptr[j] = dbuf[testidx*k + j]; |
|
for( ; j < k0; j++ ) |
|
dptr[j] = 0.f; |
|
} |
|
|
|
if( results || testidx+range.start == 0 ) |
|
{ |
|
if( !isclassifier || k == 1 ) |
|
{ |
|
float s = 0.f; |
|
for( j = 0; j < k; j++ ) |
|
s += rbuf[testidx*k + j]; |
|
result = (float)(s*inv_scale); |
|
} |
|
else |
|
{ |
|
float* rp = rbuf + testidx*k; |
|
std::sort(rp, rp+k); |
|
|
|
result = rp[0]; |
|
int prev_start = 0; |
|
int best_count = 0; |
|
for( j = 1; j <= k; j++ ) |
|
{ |
|
if( j == k || rp[j] != rp[j-1] ) |
|
{ |
|
int count = j - prev_start; |
|
if( best_count < count ) |
|
{ |
|
best_count = count; |
|
result = rp[j-1]; |
|
} |
|
prev_start = j; |
|
} |
|
} |
|
} |
|
if( results ) |
|
results->at<float>(testidx + range.start) = result; |
|
if( presult && testidx+range.start == 0 ) |
|
*presult = result; |
|
} |
|
} |
|
} |
|
|
|
struct findKNearestInvoker : public ParallelLoopBody |
|
{ |
|
findKNearestInvoker(const BruteForceImpl* _p, int _k, const Mat& __samples, |
|
Mat* __results, Mat* __neighbor_responses, Mat* __dists, float* _presult) |
|
{ |
|
p = _p; |
|
k = _k; |
|
_samples = &__samples; |
|
_results = __results; |
|
_neighbor_responses = __neighbor_responses; |
|
_dists = __dists; |
|
presult = _presult; |
|
} |
|
|
|
void operator()(const Range& range) const CV_OVERRIDE |
|
{ |
|
int delta = std::min(range.end - range.start, 256); |
|
for( int start = range.start; start < range.end; start += delta ) |
|
{ |
|
p->findNearestCore( *_samples, k, Range(start, std::min(start + delta, range.end)), |
|
_results, _neighbor_responses, _dists, presult ); |
|
} |
|
} |
|
|
|
const BruteForceImpl* p; |
|
int k; |
|
const Mat* _samples; |
|
Mat* _results; |
|
Mat* _neighbor_responses; |
|
Mat* _dists; |
|
float* presult; |
|
}; |
|
|
|
float findNearest( InputArray _samples, int k, |
|
OutputArray _results, |
|
OutputArray _neighborResponses, |
|
OutputArray _dists ) const CV_OVERRIDE |
|
{ |
|
float result = 0.f; |
|
CV_Assert( 0 < k ); |
|
|
|
Mat test_samples = _samples.getMat(); |
|
CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols ); |
|
int testcount = test_samples.rows; |
|
|
|
if( testcount == 0 ) |
|
{ |
|
_results.release(); |
|
_neighborResponses.release(); |
|
_dists.release(); |
|
return 0.f; |
|
} |
|
|
|
Mat res, nr, d, *pres = 0, *pnr = 0, *pd = 0; |
|
if( _results.needed() ) |
|
{ |
|
_results.create(testcount, 1, CV_32F); |
|
pres = &(res = _results.getMat()); |
|
} |
|
if( _neighborResponses.needed() ) |
|
{ |
|
_neighborResponses.create(testcount, k, CV_32F); |
|
pnr = &(nr = _neighborResponses.getMat()); |
|
} |
|
if( _dists.needed() ) |
|
{ |
|
_dists.create(testcount, k, CV_32F); |
|
pd = &(d = _dists.getMat()); |
|
} |
|
|
|
findKNearestInvoker invoker(this, k, test_samples, pres, pnr, pd, &result); |
|
parallel_for_(Range(0, testcount), invoker); |
|
//invoker(Range(0, testcount)); |
|
return result; |
|
} |
|
}; |
|
|
|
|
|
class KDTreeImpl CV_FINAL : public Impl |
|
{ |
|
public: |
|
String getModelName() const CV_OVERRIDE { return NAME_KDTREE; } |
|
int getType() const CV_OVERRIDE { return ml::KNearest::KDTREE; } |
|
|
|
void doTrain(InputArray points) CV_OVERRIDE |
|
{ |
|
tr.build(points); |
|
} |
|
|
|
float findNearest( InputArray _samples, int k, |
|
OutputArray _results, |
|
OutputArray _neighborResponses, |
|
OutputArray _dists ) const CV_OVERRIDE |
|
{ |
|
float result = 0.f; |
|
CV_Assert( 0 < k ); |
|
|
|
Mat test_samples = _samples.getMat(); |
|
CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols ); |
|
int testcount = test_samples.rows; |
|
|
|
if( testcount == 0 ) |
|
{ |
|
_results.release(); |
|
_neighborResponses.release(); |
|
_dists.release(); |
|
return 0.f; |
|
} |
|
|
|
Mat res, nr, d; |
|
if( _results.needed() ) |
|
{ |
|
_results.create(testcount, 1, CV_32F); |
|
res = _results.getMat(); |
|
} |
|
if( _neighborResponses.needed() ) |
|
{ |
|
_neighborResponses.create(testcount, k, CV_32F); |
|
nr = _neighborResponses.getMat(); |
|
} |
|
if( _dists.needed() ) |
|
{ |
|
_dists.create(testcount, k, CV_32F); |
|
d = _dists.getMat(); |
|
} |
|
|
|
for (int i=0; i<test_samples.rows; ++i) |
|
{ |
|
Mat _res, _nr, _d; |
|
if (res.rows>i) |
|
{ |
|
_res = res.row(i); |
|
} |
|
if (nr.rows>i) |
|
{ |
|
_nr = nr.row(i); |
|
} |
|
if (d.rows>i) |
|
{ |
|
_d = d.row(i); |
|
} |
|
tr.findNearest(test_samples.row(i), k, Emax, _res, _nr, _d, noArray()); |
|
} |
|
|
|
return result; // currently always 0 |
|
} |
|
|
|
KDTree tr; |
|
}; |
|
|
|
//================================================================ |
|
|
|
class KNearestImpl CV_FINAL : public KNearest |
|
{ |
|
inline int getDefaultK() const CV_OVERRIDE { return impl->defaultK; } |
|
inline void setDefaultK(int val) CV_OVERRIDE { impl->defaultK = val; } |
|
inline bool getIsClassifier() const CV_OVERRIDE { return impl->isclassifier; } |
|
inline void setIsClassifier(bool val) CV_OVERRIDE { impl->isclassifier = val; } |
|
inline int getEmax() const CV_OVERRIDE { return impl->Emax; } |
|
inline void setEmax(int val) CV_OVERRIDE { impl->Emax = val; } |
|
|
|
public: |
|
int getAlgorithmType() const CV_OVERRIDE |
|
{ |
|
return impl->getType(); |
|
} |
|
void setAlgorithmType(int val) CV_OVERRIDE |
|
{ |
|
if (val != BRUTE_FORCE && val != KDTREE) |
|
val = BRUTE_FORCE; |
|
|
|
int k = getDefaultK(); |
|
int e = getEmax(); |
|
bool c = getIsClassifier(); |
|
|
|
initImpl(val); |
|
|
|
setDefaultK(k); |
|
setEmax(e); |
|
setIsClassifier(c); |
|
} |
|
|
|
public: |
|
KNearestImpl() |
|
{ |
|
initImpl(BRUTE_FORCE); |
|
} |
|
~KNearestImpl() |
|
{ |
|
} |
|
|
|
bool isClassifier() const CV_OVERRIDE { return impl->isclassifier; } |
|
bool isTrained() const CV_OVERRIDE { return !impl->samples.empty(); } |
|
|
|
int getVarCount() const CV_OVERRIDE { return impl->samples.cols; } |
|
|
|
void write( FileStorage& fs ) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
impl->write(fs); |
|
} |
|
|
|
void read( const FileNode& fn ) CV_OVERRIDE |
|
{ |
|
int algorithmType = BRUTE_FORCE; |
|
if (fn.name() == NAME_KDTREE) |
|
algorithmType = KDTREE; |
|
initImpl(algorithmType); |
|
impl->read(fn); |
|
} |
|
|
|
float findNearest( InputArray samples, int k, |
|
OutputArray results, |
|
OutputArray neighborResponses=noArray(), |
|
OutputArray dist=noArray() ) const CV_OVERRIDE |
|
{ |
|
return impl->findNearest(samples, k, results, neighborResponses, dist); |
|
} |
|
|
|
float predict(InputArray inputs, OutputArray outputs, int) const CV_OVERRIDE |
|
{ |
|
return impl->findNearest( inputs, impl->defaultK, outputs, noArray(), noArray() ); |
|
} |
|
|
|
bool train( const Ptr<TrainData>& data, int flags ) CV_OVERRIDE |
|
{ |
|
return impl->train(data, flags); |
|
} |
|
|
|
String getDefaultName() const CV_OVERRIDE { return impl->getModelName(); } |
|
|
|
protected: |
|
void initImpl(int algorithmType) |
|
{ |
|
if (algorithmType != KDTREE) |
|
impl = makePtr<BruteForceImpl>(); |
|
else |
|
impl = makePtr<KDTreeImpl>(); |
|
} |
|
Ptr<Impl> impl; |
|
}; |
|
|
|
Ptr<KNearest> KNearest::create() |
|
{ |
|
return makePtr<KNearestImpl>(); |
|
} |
|
|
|
} |
|
} |
|
|
|
/* End of file */
|
|
|