Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
647 lines
19 KiB
647 lines
19 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_core.hpp" |
|
#include "stat.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
template <typename T, typename ST> |
|
struct Sum_SIMD |
|
{ |
|
int operator () (const T *, const uchar *, ST *, int, int) const |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
template <typename ST, typename DT> |
|
inline void addChannels(DT * dst, ST * buf, int cn) |
|
{ |
|
for (int i = 0; i < 4; ++i) |
|
dst[i % cn] += buf[i]; |
|
} |
|
|
|
#if CV_SSE2 |
|
|
|
template <> |
|
struct Sum_SIMD<schar, int> |
|
{ |
|
int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128i v_zero = _mm_setzero_si128(), v_sum = v_zero; |
|
|
|
for ( ; x <= len - 16; x += 16) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src0 + x)); |
|
__m128i v_half = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, v_src), 8); |
|
|
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_half), 16)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_half), 16)); |
|
|
|
v_half = _mm_srai_epi16(_mm_unpackhi_epi8(v_zero, v_src), 8); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_half), 16)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_half), 16)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src0 + x))), 8); |
|
|
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
} |
|
|
|
int CV_DECL_ALIGNED(16) ar[4]; |
|
_mm_store_si128((__m128i*)ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<int, double> |
|
{ |
|
int operator () (const int * src0, const uchar * mask, double * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128d v_zero = _mm_setzero_pd(), v_sum0 = v_zero, v_sum1 = v_zero; |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src0 + x)); |
|
v_sum0 = _mm_add_pd(v_sum0, _mm_cvtepi32_pd(v_src)); |
|
v_sum1 = _mm_add_pd(v_sum1, _mm_cvtepi32_pd(_mm_srli_si128(v_src, 8))); |
|
} |
|
|
|
double CV_DECL_ALIGNED(16) ar[4]; |
|
_mm_store_pd(ar, v_sum0); |
|
_mm_store_pd(ar + 2, v_sum1); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<float, double> |
|
{ |
|
int operator () (const float * src0, const uchar * mask, double * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128d v_zero = _mm_setzero_pd(), v_sum0 = v_zero, v_sum1 = v_zero; |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src0 + x); |
|
v_sum0 = _mm_add_pd(v_sum0, _mm_cvtps_pd(v_src)); |
|
v_src = _mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8)); |
|
v_sum1 = _mm_add_pd(v_sum1, _mm_cvtps_pd(v_src)); |
|
} |
|
|
|
double CV_DECL_ALIGNED(16) ar[4]; |
|
_mm_store_pd(ar, v_sum0); |
|
_mm_store_pd(ar + 2, v_sum1); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
|
|
#elif CV_NEON |
|
|
|
template <> |
|
struct Sum_SIMD<uchar, int> |
|
{ |
|
int operator () (const uchar * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
uint32x4_t v_sum = vdupq_n_u32(0u); |
|
|
|
for ( ; x <= len - 16; x += 16) |
|
{ |
|
uint8x16_t v_src = vld1q_u8(src0 + x); |
|
uint16x8_t v_half = vmovl_u8(vget_low_u8(v_src)); |
|
|
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_half)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_half)); |
|
|
|
v_half = vmovl_u8(vget_high_u8(v_src)); |
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_half)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_half)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src0 + x)); |
|
|
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_src)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_src)); |
|
} |
|
|
|
unsigned int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_u32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<schar, int> |
|
{ |
|
int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
int32x4_t v_sum = vdupq_n_s32(0); |
|
|
|
for ( ; x <= len - 16; x += 16) |
|
{ |
|
int8x16_t v_src = vld1q_s8(src0 + x); |
|
int16x8_t v_half = vmovl_s8(vget_low_s8(v_src)); |
|
|
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_half)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_half)); |
|
|
|
v_half = vmovl_s8(vget_high_s8(v_src)); |
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_half)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_half)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src0 + x)); |
|
|
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_src)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_src)); |
|
} |
|
|
|
int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_s32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<ushort, int> |
|
{ |
|
int operator () (const ushort * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
uint32x4_t v_sum = vdupq_n_u32(0u); |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src0 + x); |
|
|
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_src)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_src)); |
|
} |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
v_sum = vaddw_u16(v_sum, vld1_u16(src0 + x)); |
|
|
|
unsigned int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_u32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<short, int> |
|
{ |
|
int operator () (const short * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
int32x4_t v_sum = vdupq_n_s32(0u); |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src0 + x); |
|
|
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_src)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_src)); |
|
} |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
v_sum = vaddw_s16(v_sum, vld1_s16(src0 + x)); |
|
|
|
int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_s32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
#endif |
|
|
|
template<typename T, typename ST> |
|
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn ) |
|
{ |
|
const T* src = src0; |
|
if( !mask ) |
|
{ |
|
Sum_SIMD<T, ST> vop; |
|
int i = vop(src0, mask, dst, len, cn), k = cn % 4; |
|
src += i * cn; |
|
|
|
if( k == 1 ) |
|
{ |
|
ST s0 = dst[0]; |
|
|
|
#if CV_ENABLE_UNROLLED |
|
for(; i <= len - 4; i += 4, src += cn*4 ) |
|
s0 += src[0] + src[cn] + src[cn*2] + src[cn*3]; |
|
#endif |
|
for( ; i < len; i++, src += cn ) |
|
s0 += src[0]; |
|
dst[0] = s0; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
} |
|
else if( k == 3 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
s2 += src[2]; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
dst[2] = s2; |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
src = src0 + i*cn + k; |
|
ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; s1 += src[1]; |
|
s2 += src[2]; s3 += src[3]; |
|
} |
|
dst[k] = s0; |
|
dst[k+1] = s1; |
|
dst[k+2] = s2; |
|
dst[k+3] = s3; |
|
} |
|
return len; |
|
} |
|
|
|
int i, nzm = 0; |
|
if( cn == 1 ) |
|
{ |
|
ST s = dst[0]; |
|
for( i = 0; i < len; i++ ) |
|
if( mask[i] ) |
|
{ |
|
s += src[i]; |
|
nzm++; |
|
} |
|
dst[0] = s; |
|
} |
|
else if( cn == 3 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; |
|
for( i = 0; i < len; i++, src += 3 ) |
|
if( mask[i] ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
s2 += src[2]; |
|
nzm++; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
dst[2] = s2; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
int k = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; k <= cn - 4; k += 4 ) |
|
{ |
|
ST s0, s1; |
|
s0 = dst[k] + src[k]; |
|
s1 = dst[k+1] + src[k+1]; |
|
dst[k] = s0; dst[k+1] = s1; |
|
s0 = dst[k+2] + src[k+2]; |
|
s1 = dst[k+3] + src[k+3]; |
|
dst[k+2] = s0; dst[k+3] = s1; |
|
} |
|
#endif |
|
for( ; k < cn; k++ ) |
|
dst[k] += src[k]; |
|
nzm++; |
|
} |
|
} |
|
return nzm; |
|
} |
|
|
|
|
|
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
SumFunc getSumFunc(int depth) |
|
{ |
|
static SumFunc sumTab[] = |
|
{ |
|
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s, |
|
(SumFunc)sum16u, (SumFunc)sum16s, |
|
(SumFunc)sum32s, |
|
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f, |
|
0 |
|
}; |
|
|
|
return sumTab[depth]; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask, |
|
InputArray _src2, bool calc2, const Scalar & res2 ) |
|
{ |
|
CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR); |
|
|
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
bool doubleSupport = dev.doubleFPConfig() > 0, |
|
haveMask = _mask.kind() != _InputArray::NONE, |
|
haveSrc2 = _src2.kind() != _InputArray::NONE; |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1, |
|
mcn = std::max(cn, kercn); |
|
CV_Assert(!haveSrc2 || _src2.type() == type); |
|
int convert_cn = haveSrc2 ? mcn : cn; |
|
|
|
if ( (!doubleSupport && depth == CV_64F) || cn > 4 ) |
|
return false; |
|
|
|
int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1); |
|
size_t wgs = dev.maxWorkGroupSize(); |
|
|
|
int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth), |
|
dtype = CV_MAKE_TYPE(ddepth, cn); |
|
CV_Assert(!haveMask || _mask.type() == CV_8UC1); |
|
|
|
int wgs2_aligned = 1; |
|
while (wgs2_aligned < (int)wgs) |
|
wgs2_aligned <<= 1; |
|
wgs2_aligned >>= 1; |
|
|
|
static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" }; |
|
char cvt[2][40]; |
|
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d" |
|
" -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s", |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth), |
|
ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)), |
|
ocl::typeToStr(ddepth), ddepth, cn, |
|
ocl::convertTypeStr(depth, ddepth, mcn, cvt[0]), |
|
opMap[sum_op], (int)wgs, wgs2_aligned, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
|
haveMask ? " -D HAVE_MASK" : "", |
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "", |
|
haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn, |
|
haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "", |
|
haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", |
|
depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1]) : "noconvert"); |
|
|
|
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(), src2 = _src2.getUMat(), |
|
db(1, dbsize, dtype), mask = _mask.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
dbarg = ocl::KernelArg::PtrWriteOnly(db), |
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), |
|
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2); |
|
|
|
if (haveMask) |
|
{ |
|
if (haveSrc2) |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg); |
|
else |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg); |
|
} |
|
else |
|
{ |
|
if (haveSrc2) |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg); |
|
else |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg); |
|
} |
|
|
|
size_t globalsize = ngroups * wgs; |
|
if (k.run(1, &globalsize, &wgs, false)) |
|
{ |
|
typedef Scalar (*part_sum)(Mat m); |
|
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> }, |
|
func = funcs[ddepth - CV_32S]; |
|
|
|
Mat mres = db.getMat(ACCESS_READ); |
|
if (calc2) |
|
const_cast<Scalar &>(res2) = func(mres.colRange(ngroups, dbsize)); |
|
|
|
res = func(mres.colRange(0, ngroups)); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_sum(Mat &src, Scalar &_res) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
int cn = src.channels(); |
|
if (cn > 4) |
|
return false; |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( src.dims == 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm); |
|
typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *); |
|
ippiSumFuncHint ippiSumHint = |
|
type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R : |
|
type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R : |
|
type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R : |
|
0; |
|
ippiSumFuncNoHint ippiSum = |
|
type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R : |
|
type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R : |
|
type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R : |
|
type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R : |
|
type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R : |
|
type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R : |
|
type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R : |
|
type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R : |
|
type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R : |
|
0; |
|
CV_Assert(!ippiSumHint || !ippiSum); |
|
if( ippiSumHint || ippiSum ) |
|
{ |
|
Ipp64f res[4]; |
|
IppStatus ret = ippiSumHint ? |
|
CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res); |
|
if( ret >= 0 ) |
|
{ |
|
for( int i = 0; i < cn; i++ ) |
|
_res[i] = res[i]; |
|
return true; |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(_res); |
|
#endif |
|
return false; |
|
} |
|
#endif |
|
|
|
} // cv:: |
|
|
|
cv::Scalar cv::sum( InputArray _src ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
Scalar _res; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_sum(_src, _res, OCL_OP_SUM), |
|
_res) |
|
#endif |
|
|
|
Mat src = _src.getMat(); |
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res); |
|
|
|
int k, cn = src.channels(), depth = src.depth(); |
|
SumFunc func = getSumFunc(depth); |
|
CV_Assert( cn <= 4 && func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Scalar s; |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0; |
|
AutoBuffer<int> _buf; |
|
int* buf = (int*)&s[0]; |
|
size_t esz = 0; |
|
bool blockSum = depth < CV_32S; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
_buf.allocate(cn); |
|
buf = _buf.data(); |
|
|
|
for( k = 0; k < cn; k++ ) |
|
buf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], 0, (uchar*)buf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += buf[k]; |
|
buf[k] = 0; |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
} |
|
} |
|
return s; |
|
}
|
|
|