mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
4.5 KiB
138 lines
4.5 KiB
#include "opencv2/ml/ml.hpp" |
|
#include "opencv2/core/core_c.h" |
|
#include <stdio.h> |
|
#include <map> |
|
|
|
void help() |
|
{ |
|
printf( |
|
"\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees:\n" |
|
"CvDTree dtree;\n" |
|
"CvBoost boost;\n" |
|
"CvRTrees rtrees;\n" |
|
"CvERTrees ertrees;\n" |
|
"CvGBTrees gbtrees;\n" |
|
"Call:\n\t./tree_engine [-r <response_column>] [-c] <csv filename>\n" |
|
"where -r <response_column> specified the 0-based index of the response (0 by default)\n" |
|
"-c specifies that the response is categorical (it's ordered by default) and\n" |
|
"<csv filename> is the name of training data file in comma-separated value format\n\n"); |
|
} |
|
|
|
|
|
int count_classes(CvMLData& data) |
|
{ |
|
cv::Mat r(data.get_responses()); |
|
std::map<int, int> rmap; |
|
int i, n = (int)r.total(); |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
float val = r.at<float>(i); |
|
int ival = cvRound(val); |
|
if( ival != val ) |
|
return -1; |
|
rmap[ival] = 1; |
|
} |
|
return (int)rmap.size(); |
|
} |
|
|
|
void print_result(float train_err, float test_err, const CvMat* _var_imp) |
|
{ |
|
printf( "train error %f\n", train_err ); |
|
printf( "test error %f\n\n", test_err ); |
|
|
|
if (_var_imp) |
|
{ |
|
cv::Mat var_imp(_var_imp), sorted_idx; |
|
cv::sortIdx(var_imp, sorted_idx, CV_SORT_EVERY_ROW + CV_SORT_DESCENDING); |
|
|
|
printf( "variable importance:\n" ); |
|
int i, n = (int)var_imp.total(); |
|
int type = var_imp.type(); |
|
CV_Assert(type == CV_32F || type == CV_64F); |
|
|
|
for( i = 0; i < n; i++) |
|
{ |
|
int k = sorted_idx.at<int>(i); |
|
printf( "%d\t%f\n", k, type == CV_32F ? var_imp.at<float>(k) : var_imp.at<double>(k)); |
|
} |
|
} |
|
printf("\n"); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if(argc < 2) |
|
{ |
|
help(); |
|
return 0; |
|
} |
|
const char* filename = 0; |
|
int response_idx = 0; |
|
bool categorical_response = false; |
|
|
|
for(int i = 1; i < argc; i++) |
|
{ |
|
if(strcmp(argv[i], "-r") == 0) |
|
sscanf(argv[++i], "%d", &response_idx); |
|
else if(strcmp(argv[i], "-c") == 0) |
|
categorical_response = true; |
|
else if(argv[i][0] != '-' ) |
|
filename = argv[i]; |
|
else |
|
{ |
|
printf("Error. Invalid option %s\n", argv[i]); |
|
help(); |
|
return -1; |
|
} |
|
} |
|
|
|
printf("\nReading in %s...\n\n",filename); |
|
CvDTree dtree; |
|
CvBoost boost; |
|
CvRTrees rtrees; |
|
CvERTrees ertrees; |
|
CvGBTrees gbtrees; |
|
|
|
CvMLData data; |
|
|
|
|
|
CvTrainTestSplit spl( 0.5f ); |
|
|
|
if ( data.read_csv( filename ) == 0) |
|
{ |
|
data.set_response_idx( response_idx ); |
|
if(categorical_response) |
|
data.change_var_type( response_idx, CV_VAR_CATEGORICAL ); |
|
data.set_train_test_split( &spl ); |
|
|
|
printf("======DTREE=====\n"); |
|
dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 )); |
|
print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() ); |
|
|
|
if( categorical_response && count_classes(data) == 2 ) |
|
{ |
|
printf("======BOOST=====\n"); |
|
boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0)); |
|
print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance |
|
} |
|
|
|
printf("======RTREES=====\n"); |
|
rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER )); |
|
print_result( rtrees.calc_error( &data, CV_TRAIN_ERROR), rtrees.calc_error( &data, CV_TEST_ERROR ), rtrees.get_var_importance() ); |
|
|
|
printf("======ERTREES=====\n"); |
|
ertrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER )); |
|
print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() ); |
|
|
|
printf("======GBTREES=====\n"); |
|
if (categorical_response) |
|
gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.1f, 0.8f, 5, false)); |
|
else |
|
gbtrees.train( &data, CvGBTreesParams(CvGBTrees::SQUARED_LOSS, 100, 0.1f, 0.8f, 5, false)); |
|
print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance |
|
} |
|
else |
|
printf("File can not be read"); |
|
|
|
return 0; |
|
}
|
|
|