Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

138 lines
4.8 KiB

#ifndef _LSVM_DIST_TRANSFORM_H_
#define _LSVM_DIST_TRANSFORM_H_
#include "_lsvm_types.h"
#include "_lsvm_error.h"
/*
// Computation the point of intersection functions
// (parabolas on the variable y)
// a(y - q1) + b(q1 - y)(q1 - y) + f[q1]
// a(y - q2) + b(q2 - y)(q2 - y) + f[q2]
//
// API
// int GetPointOfIntersection(const F_type *f,
const F_type a, const F_type b,
int q1, int q2, F_type *point);
// INPUT
// f - function on the regular grid
// a - coefficient of the function
// b - coefficient of the function
// q1 - parameter of the function
// q2 - parameter of the function
// OUTPUT
// point - point of intersection
// RESULT
// Error status
*/
int GetPointOfIntersection(const float *f,
const float a, const float b,
int q1, int q2, float *point);
/*
// Decision of one dimensional problem generalized distance transform
// on the regular grid at all points
// min (a(y' - y) + b(y' - y)(y' - y) + f(y')) (on y')
//
// API
// int DistanceTransformOneDimensionalProblem(const F_type *f, const int n,
const F_type a, const F_type b,
F_type *distanceTransform,
int *points);
// INPUT
// f - function on the regular grid
// n - grid dimension
// a - coefficient of optimizable function
// b - coefficient of optimizable function
// OUTPUT
// distanceTransform - values of generalized distance transform
// points - arguments that corresponds to the optimal value of function
// RESULT
// Error status
*/
int DistanceTransformOneDimensionalProblem(const float *f, const int n,
const float a, const float b,
float *distanceTransform,
int *points);
/*
// Computation next cycle element
//
// API
// int GetNextCycleElement(int k, int n, int q);
// INPUT
// k - index of the previous cycle element
// n - number of matrix rows
// q - parameter that equal (number_of_rows * number_of_columns - 1)
// OUTPUT
// None
// RESULT
// Next cycle element
*/
int GetNextCycleElement(int k, int n, int q);
/*
// Transposition of cycle elements
//
// API
// void TransposeCycleElements(F_type *a, int *cycle, int cycle_len);
// INPUT
// a - initial matrix
// cycle - cycle
// cycle_len - cycle length
// OUTPUT
// a - matrix with transposed elements
// RESULT
// None
*/
void TransposeCycleElements(float *a, int *cycle, int cycle_len);
/*
// Getting transposed matrix
//
// API
// void Transpose(F_type *a, int n, int m);
// INPUT
// a - initial matrix
// n - number of rows
// m - number of columns
// OUTPUT
// a - transposed matrix
// RESULT
// Error status
*/
void Transpose(float *a, int n, int m);
/*
// Decision of two dimensional problem generalized distance transform
// on the regular grid at all points
// min{d2(y' - y) + d4(y' - y)(y' - y) +
min(d1(x' - x) + d3(x' - x)(x' - x) + f(x',y'))} (on x', y')
//
// API
// int DistanceTransformTwoDimensionalProblem(const F_type *f,
const int n, const int m,
const F_type coeff[4],
F_type *distanceTransform,
int *pointsX, int *pointsY);
// INPUT
// f - function on the regular grid
// n - number of rows
// m - number of columns
// coeff - coefficients of optimizable function
coeff[0] = d1, coeff[1] = d2,
coeff[2] = d3, coeff[3] = d4
// OUTPUT
// distanceTransform - values of generalized distance transform
// pointsX - arguments x' that correspond to the optimal value
// pointsY - arguments y' that correspond to the optimal value
// RESULT
// Error status
*/
int DistanceTransformTwoDimensionalProblem(const float *f,
const int n, const int m,
const float coeff[4],
float *distanceTransform,
int *pointsX, int *pointsY);
#endif