mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
638 lines
23 KiB
638 lines
23 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_CONTRIB_HPP__ |
|
#define __OPENCV_CONTRIB_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/features2d.hpp" |
|
#include "opencv2/objdetect.hpp" |
|
|
|
namespace cv |
|
{ |
|
class CV_EXPORTS Octree |
|
{ |
|
public: |
|
struct Node |
|
{ |
|
Node() {} |
|
int begin, end; |
|
float x_min, x_max, y_min, y_max, z_min, z_max; |
|
int maxLevels; |
|
bool isLeaf; |
|
int children[8]; |
|
}; |
|
|
|
Octree(); |
|
Octree( const std::vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 ); |
|
virtual ~Octree(); |
|
|
|
virtual void buildTree( const std::vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 ); |
|
virtual void getPointsWithinSphere( const Point3f& center, float radius, |
|
std::vector<Point3f>& points ) const; |
|
const std::vector<Node>& getNodes() const { return nodes; } |
|
private: |
|
int minPoints; |
|
std::vector<Point3f> points; |
|
std::vector<Node> nodes; |
|
|
|
virtual void buildNext(size_t node_ind); |
|
}; |
|
|
|
|
|
class CV_EXPORTS Mesh3D |
|
{ |
|
public: |
|
struct EmptyMeshException {}; |
|
|
|
Mesh3D(); |
|
Mesh3D(const std::vector<Point3f>& vtx); |
|
~Mesh3D(); |
|
|
|
void buildOctree(); |
|
void clearOctree(); |
|
float estimateResolution(float tryRatio = 0.1f); |
|
void computeNormals(float normalRadius, int minNeighbors = 20); |
|
void computeNormals(const std::vector<int>& subset, float normalRadius, int minNeighbors = 20); |
|
|
|
void writeAsVrml(const String& file, const std::vector<Scalar>& colors = std::vector<Scalar>()) const; |
|
|
|
std::vector<Point3f> vtx; |
|
std::vector<Point3f> normals; |
|
float resolution; |
|
Octree octree; |
|
|
|
const static Point3f allzero; |
|
}; |
|
|
|
class CV_EXPORTS SpinImageModel |
|
{ |
|
public: |
|
|
|
/* model parameters, leave unset for default or auto estimate */ |
|
float normalRadius; |
|
int minNeighbors; |
|
|
|
float binSize; |
|
int imageWidth; |
|
|
|
float lambda; |
|
float gamma; |
|
|
|
float T_GeometriccConsistency; |
|
float T_GroupingCorespondances; |
|
|
|
/* public interface */ |
|
SpinImageModel(); |
|
explicit SpinImageModel(const Mesh3D& mesh); |
|
~SpinImageModel(); |
|
|
|
void selectRandomSubset(float ratio); |
|
void setSubset(const std::vector<int>& subset); |
|
void compute(); |
|
|
|
void match(const SpinImageModel& scene, std::vector< std::vector<Vec2i> >& result); |
|
|
|
Mat packRandomScaledSpins(bool separateScale = false, size_t xCount = 10, size_t yCount = 10) const; |
|
|
|
size_t getSpinCount() const { return spinImages.rows; } |
|
Mat getSpinImage(size_t index) const { return spinImages.row((int)index); } |
|
const Point3f& getSpinVertex(size_t index) const { return mesh.vtx[subset[index]]; } |
|
const Point3f& getSpinNormal(size_t index) const { return mesh.normals[subset[index]]; } |
|
|
|
const Mesh3D& getMesh() const { return mesh; } |
|
Mesh3D& getMesh() { return mesh; } |
|
|
|
/* static utility functions */ |
|
static bool spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result); |
|
|
|
static Point2f calcSpinMapCoo(const Point3f& point, const Point3f& vertex, const Point3f& normal); |
|
|
|
static float geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1, |
|
const Point3f& pointModel1, const Point3f& normalModel1, |
|
const Point3f& pointScene2, const Point3f& normalScene2, |
|
const Point3f& pointModel2, const Point3f& normalModel2); |
|
|
|
static float groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1, |
|
const Point3f& pointModel1, const Point3f& normalModel1, |
|
const Point3f& pointScene2, const Point3f& normalScene2, |
|
const Point3f& pointModel2, const Point3f& normalModel2, |
|
float gamma); |
|
protected: |
|
void defaultParams(); |
|
|
|
void matchSpinToModel(const Mat& spin, std::vector<int>& indeces, |
|
std::vector<float>& corrCoeffs, bool useExtremeOutliers = true) const; |
|
|
|
void repackSpinImages(const std::vector<uchar>& mask, Mat& spinImages, bool reAlloc = true) const; |
|
|
|
std::vector<int> subset; |
|
Mesh3D mesh; |
|
Mat spinImages; |
|
}; |
|
|
|
class CV_EXPORTS TickMeter |
|
{ |
|
public: |
|
TickMeter(); |
|
void start(); |
|
void stop(); |
|
|
|
int64 getTimeTicks() const; |
|
double getTimeMicro() const; |
|
double getTimeMilli() const; |
|
double getTimeSec() const; |
|
int64 getCounter() const; |
|
|
|
void reset(); |
|
private: |
|
int64 counter; |
|
int64 sumTime; |
|
int64 startTime; |
|
}; |
|
|
|
//CV_EXPORTS std::ostream& operator<<(std::ostream& out, const TickMeter& tm); |
|
|
|
class CV_EXPORTS SelfSimDescriptor |
|
{ |
|
public: |
|
SelfSimDescriptor(); |
|
SelfSimDescriptor(int _ssize, int _lsize, |
|
int _startDistanceBucket=DEFAULT_START_DISTANCE_BUCKET, |
|
int _numberOfDistanceBuckets=DEFAULT_NUM_DISTANCE_BUCKETS, |
|
int _nangles=DEFAULT_NUM_ANGLES); |
|
SelfSimDescriptor(const SelfSimDescriptor& ss); |
|
virtual ~SelfSimDescriptor(); |
|
SelfSimDescriptor& operator = (const SelfSimDescriptor& ss); |
|
|
|
size_t getDescriptorSize() const; |
|
Size getGridSize( Size imgsize, Size winStride ) const; |
|
|
|
virtual void compute(const Mat& img, std::vector<float>& descriptors, Size winStride=Size(), |
|
const std::vector<Point>& locations=std::vector<Point>()) const; |
|
virtual void computeLogPolarMapping(Mat& mappingMask) const; |
|
virtual void SSD(const Mat& img, Point pt, Mat& ssd) const; |
|
|
|
int smallSize; |
|
int largeSize; |
|
int startDistanceBucket; |
|
int numberOfDistanceBuckets; |
|
int numberOfAngles; |
|
|
|
enum { DEFAULT_SMALL_SIZE = 5, DEFAULT_LARGE_SIZE = 41, |
|
DEFAULT_NUM_ANGLES = 20, DEFAULT_START_DISTANCE_BUCKET = 3, |
|
DEFAULT_NUM_DISTANCE_BUCKETS = 7 }; |
|
}; |
|
|
|
|
|
CV_EXPORTS_W int chamerMatching( Mat& img, Mat& templ, |
|
CV_OUT std::vector<std::vector<Point> >& results, CV_OUT std::vector<float>& cost, |
|
double templScale=1, int maxMatches = 20, |
|
double minMatchDistance = 1.0, int padX = 3, |
|
int padY = 3, int scales = 5, double minScale = 0.6, double maxScale = 1.6, |
|
double orientationWeight = 0.5, double truncate = 20); |
|
|
|
|
|
class CV_EXPORTS_W StereoVar |
|
{ |
|
public: |
|
// Flags |
|
enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_AUTO_PARAMS = 8, USE_MEDIAN_FILTERING = 16}; |
|
enum {CYCLE_O, CYCLE_V}; |
|
enum {PENALIZATION_TICHONOV, PENALIZATION_CHARBONNIER, PENALIZATION_PERONA_MALIK}; |
|
|
|
//! the default constructor |
|
CV_WRAP StereoVar(); |
|
|
|
//! the full constructor taking all the necessary algorithm parameters |
|
CV_WRAP StereoVar(int levels, double pyrScale, int nIt, int minDisp, int maxDisp, int poly_n, double poly_sigma, float fi, float lambda, int penalization, int cycle, int flags); |
|
|
|
//! the destructor |
|
virtual ~StereoVar(); |
|
|
|
//! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair |
|
CV_WRAP_AS(compute) virtual void operator()(const Mat& left, const Mat& right, CV_OUT Mat& disp); |
|
|
|
CV_PROP_RW int levels; |
|
CV_PROP_RW double pyrScale; |
|
CV_PROP_RW int nIt; |
|
CV_PROP_RW int minDisp; |
|
CV_PROP_RW int maxDisp; |
|
CV_PROP_RW int poly_n; |
|
CV_PROP_RW double poly_sigma; |
|
CV_PROP_RW float fi; |
|
CV_PROP_RW float lambda; |
|
CV_PROP_RW int penalization; |
|
CV_PROP_RW int cycle; |
|
CV_PROP_RW int flags; |
|
|
|
private: |
|
void autoParams(); |
|
void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level); |
|
void VCycle_MyFAS(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level); |
|
void VariationalSolver(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level); |
|
}; |
|
|
|
CV_EXPORTS void polyfit(const Mat& srcx, const Mat& srcy, Mat& dst, int order); |
|
|
|
class CV_EXPORTS Directory |
|
{ |
|
public: |
|
static std::vector<String> GetListFiles ( const String& path, const String & exten = "*", bool addPath = true ); |
|
static std::vector<String> GetListFilesR ( const String& path, const String & exten = "*", bool addPath = true ); |
|
static std::vector<String> GetListFolders( const String& path, const String & exten = "*", bool addPath = true ); |
|
}; |
|
|
|
/* |
|
* Generation of a set of different colors by the following way: |
|
* 1) generate more then need colors (in "factor" times) in RGB, |
|
* 2) convert them to Lab, |
|
* 3) choose the needed count of colors from the set that are more different from |
|
* each other, |
|
* 4) convert the colors back to RGB |
|
*/ |
|
CV_EXPORTS void generateColors( std::vector<Scalar>& colors, size_t count, size_t factor=100 ); |
|
|
|
|
|
/* |
|
* Estimate the rigid body motion from frame0 to frame1. The method is based on the paper |
|
* "Real-Time Visual Odometry from Dense RGB-D Images", F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011. |
|
*/ |
|
enum { ROTATION = 1, |
|
TRANSLATION = 2, |
|
RIGID_BODY_MOTION = 4 |
|
}; |
|
CV_EXPORTS bool RGBDOdometry( Mat& Rt, const Mat& initRt, |
|
const Mat& image0, const Mat& depth0, const Mat& mask0, |
|
const Mat& image1, const Mat& depth1, const Mat& mask1, |
|
const Mat& cameraMatrix, float minDepth=0.f, float maxDepth=4.f, float maxDepthDiff=0.07f, |
|
const std::vector<int>& iterCounts=std::vector<int>(), |
|
const std::vector<float>& minGradientMagnitudes=std::vector<float>(), |
|
int transformType=RIGID_BODY_MOTION ); |
|
|
|
/** |
|
*Bilinear interpolation technique. |
|
* |
|
*The value of a desired cortical pixel is obtained through a bilinear interpolation of the values |
|
*of the four nearest neighbouring Cartesian pixels to the center of the RF. |
|
*The same principle is applied to the inverse transformation. |
|
* |
|
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5 |
|
*/ |
|
class CV_EXPORTS LogPolar_Interp |
|
{ |
|
public: |
|
|
|
LogPolar_Interp() {} |
|
|
|
/** |
|
*Constructor |
|
*\param w the width of the input image |
|
*\param h the height of the input image |
|
*\param center the transformation center: where the output precision is maximal |
|
*\param R the number of rings of the cortical image (default value 70 pixel) |
|
*\param ro0 the radius of the blind spot (default value 3 pixel) |
|
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle. |
|
* \a 0 means that the retinal image is computed within the inscribed circle. |
|
*\param S the number of sectors of the cortical image (default value 70 pixel). |
|
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1. |
|
*\param sp \a 1 (default value) means that the parameter \a S is internally computed. |
|
* \a 0 means that the parameter \a S is provided by the user. |
|
*/ |
|
LogPolar_Interp(int w, int h, Point2i center, int R=70, double ro0=3.0, |
|
int interp=INTER_LINEAR, int full=1, int S=117, int sp=1); |
|
/** |
|
*Transformation from Cartesian image to cortical (log-polar) image. |
|
*\param source the Cartesian image |
|
*\return the transformed image (cortical image) |
|
*/ |
|
const Mat to_cortical(const Mat &source); |
|
/** |
|
*Transformation from cortical image to retinal (inverse log-polar) image. |
|
*\param source the cortical image |
|
*\return the transformed image (retinal image) |
|
*/ |
|
const Mat to_cartesian(const Mat &source); |
|
/** |
|
*Destructor |
|
*/ |
|
~LogPolar_Interp(); |
|
|
|
protected: |
|
|
|
Mat Rsri; |
|
Mat Csri; |
|
|
|
int S, R, M, N; |
|
int top, bottom,left,right; |
|
double ro0, romax, a, q; |
|
int interp; |
|
|
|
Mat ETAyx; |
|
Mat CSIyx; |
|
|
|
void create_map(int M, int N, int R, int S, double ro0); |
|
}; |
|
|
|
/** |
|
*Overlapping circular receptive fields technique |
|
* |
|
*The Cartesian plane is divided in two regions: the fovea and the periphery. |
|
*The fovea (oversampling) is handled by using the bilinear interpolation technique described above, whereas in |
|
*the periphery we use the overlapping Gaussian circular RFs. |
|
* |
|
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5 |
|
*/ |
|
class CV_EXPORTS LogPolar_Overlapping |
|
{ |
|
public: |
|
LogPolar_Overlapping() {} |
|
|
|
/** |
|
*Constructor |
|
*\param w the width of the input image |
|
*\param h the height of the input image |
|
*\param center the transformation center: where the output precision is maximal |
|
*\param R the number of rings of the cortical image (default value 70 pixel) |
|
*\param ro0 the radius of the blind spot (default value 3 pixel) |
|
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle. |
|
* \a 0 means that the retinal image is computed within the inscribed circle. |
|
*\param S the number of sectors of the cortical image (default value 70 pixel). |
|
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1. |
|
*\param sp \a 1 (default value) means that the parameter \a S is internally computed. |
|
* \a 0 means that the parameter \a S is provided by the user. |
|
*/ |
|
LogPolar_Overlapping(int w, int h, Point2i center, int R=70, |
|
double ro0=3.0, int full=1, int S=117, int sp=1); |
|
/** |
|
*Transformation from Cartesian image to cortical (log-polar) image. |
|
*\param source the Cartesian image |
|
*\return the transformed image (cortical image) |
|
*/ |
|
const Mat to_cortical(const Mat &source); |
|
/** |
|
*Transformation from cortical image to retinal (inverse log-polar) image. |
|
*\param source the cortical image |
|
*\return the transformed image (retinal image) |
|
*/ |
|
const Mat to_cartesian(const Mat &source); |
|
/** |
|
*Destructor |
|
*/ |
|
~LogPolar_Overlapping(); |
|
|
|
protected: |
|
|
|
Mat Rsri; |
|
Mat Csri; |
|
std::vector<int> Rsr; |
|
std::vector<int> Csr; |
|
std::vector<double> Wsr; |
|
|
|
int S, R, M, N, ind1; |
|
int top, bottom,left,right; |
|
double ro0, romax, a, q; |
|
|
|
struct kernel |
|
{ |
|
kernel() { w = 0; } |
|
std::vector<double> weights; |
|
int w; |
|
}; |
|
|
|
Mat ETAyx; |
|
Mat CSIyx; |
|
std::vector<kernel> w_ker_2D; |
|
|
|
void create_map(int M, int N, int R, int S, double ro0); |
|
}; |
|
|
|
/** |
|
* Adjacent receptive fields technique |
|
* |
|
*All the Cartesian pixels, whose coordinates in the cortical domain share the same integer part, are assigned to the same RF. |
|
*The precision of the boundaries of the RF can be improved by breaking each pixel into subpixels and assigning each of them to the correct RF. |
|
*This technique is implemented from: Traver, V., Pla, F.: Log-polar mapping template design: From task-level requirements |
|
*to geometry parameters. Image Vision Comput. 26(10) (2008) 1354-1370 |
|
* |
|
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5 |
|
*/ |
|
class CV_EXPORTS LogPolar_Adjacent |
|
{ |
|
public: |
|
LogPolar_Adjacent() {} |
|
|
|
/** |
|
*Constructor |
|
*\param w the width of the input image |
|
*\param h the height of the input image |
|
*\param center the transformation center: where the output precision is maximal |
|
*\param R the number of rings of the cortical image (default value 70 pixel) |
|
*\param ro0 the radius of the blind spot (default value 3 pixel) |
|
*\param smin the size of the subpixel (default value 0.25 pixel) |
|
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle. |
|
* \a 0 means that the retinal image is computed within the inscribed circle. |
|
*\param S the number of sectors of the cortical image (default value 70 pixel). |
|
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1. |
|
*\param sp \a 1 (default value) means that the parameter \a S is internally computed. |
|
* \a 0 means that the parameter \a S is provided by the user. |
|
*/ |
|
LogPolar_Adjacent(int w, int h, Point2i center, int R=70, double ro0=3.0, double smin=0.25, int full=1, int S=117, int sp=1); |
|
/** |
|
*Transformation from Cartesian image to cortical (log-polar) image. |
|
*\param source the Cartesian image |
|
*\return the transformed image (cortical image) |
|
*/ |
|
const Mat to_cortical(const Mat &source); |
|
/** |
|
*Transformation from cortical image to retinal (inverse log-polar) image. |
|
*\param source the cortical image |
|
*\return the transformed image (retinal image) |
|
*/ |
|
const Mat to_cartesian(const Mat &source); |
|
/** |
|
*Destructor |
|
*/ |
|
~LogPolar_Adjacent(); |
|
|
|
protected: |
|
struct pixel |
|
{ |
|
pixel() { u = v = 0; a = 0.; } |
|
int u; |
|
int v; |
|
double a; |
|
}; |
|
int S, R, M, N; |
|
int top, bottom,left,right; |
|
double ro0, romax, a, q; |
|
std::vector<std::vector<pixel> > L; |
|
std::vector<double> A; |
|
|
|
void subdivide_recursively(double x, double y, int i, int j, double length, double smin); |
|
bool get_uv(double x, double y, int&u, int&v); |
|
void create_map(int M, int N, int R, int S, double ro0, double smin); |
|
}; |
|
|
|
CV_EXPORTS Mat subspaceProject(InputArray W, InputArray mean, InputArray src); |
|
CV_EXPORTS Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src); |
|
|
|
class CV_EXPORTS LDA |
|
{ |
|
public: |
|
// Initializes a LDA with num_components (default 0) and specifies how |
|
// samples are aligned (default dataAsRow=true). |
|
LDA(int num_components = 0) : |
|
_num_components(num_components) { } |
|
|
|
// Initializes and performs a Discriminant Analysis with Fisher's |
|
// Optimization Criterion on given data in src and corresponding labels |
|
// in labels. If 0 (or less) number of components are given, they are |
|
// automatically determined for given data in computation. |
|
LDA(InputArrayOfArrays src, InputArray labels, |
|
int num_components = 0) : |
|
_num_components(num_components) |
|
{ |
|
this->compute(src, labels); //! compute eigenvectors and eigenvalues |
|
} |
|
|
|
// Serializes this object to a given filename. |
|
void save(const String& filename) const; |
|
|
|
// Deserializes this object from a given filename. |
|
void load(const String& filename); |
|
|
|
// Serializes this object to a given cv::FileStorage. |
|
void save(FileStorage& fs) const; |
|
|
|
// Deserializes this object from a given cv::FileStorage. |
|
void load(const FileStorage& node); |
|
|
|
// Destructor. |
|
~LDA() {} |
|
|
|
//! Compute the discriminants for data in src and labels. |
|
void compute(InputArrayOfArrays src, InputArray labels); |
|
|
|
// Projects samples into the LDA subspace. |
|
Mat project(InputArray src); |
|
|
|
// Reconstructs projections from the LDA subspace. |
|
Mat reconstruct(InputArray src); |
|
|
|
// Returns the eigenvectors of this LDA. |
|
Mat eigenvectors() const { return _eigenvectors; } |
|
|
|
// Returns the eigenvalues of this LDA. |
|
Mat eigenvalues() const { return _eigenvalues; } |
|
|
|
protected: |
|
bool _dataAsRow; |
|
int _num_components; |
|
Mat _eigenvectors; |
|
Mat _eigenvalues; |
|
|
|
void lda(InputArrayOfArrays src, InputArray labels); |
|
}; |
|
|
|
class CV_EXPORTS_W FaceRecognizer : public Algorithm |
|
{ |
|
public: |
|
//! virtual destructor |
|
virtual ~FaceRecognizer() {} |
|
|
|
// Trains a FaceRecognizer. |
|
CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0; |
|
|
|
// Updates a FaceRecognizer. |
|
CV_WRAP virtual void update(InputArrayOfArrays src, InputArray labels); |
|
|
|
// Gets a prediction from a FaceRecognizer. |
|
virtual int predict(InputArray src) const = 0; |
|
|
|
// Predicts the label and confidence for a given sample. |
|
CV_WRAP virtual void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const = 0; |
|
|
|
// Serializes this object to a given filename. |
|
CV_WRAP virtual void save(const String& filename) const; |
|
|
|
// Deserializes this object from a given filename. |
|
CV_WRAP virtual void load(const String& filename); |
|
|
|
// Serializes this object to a given cv::FileStorage. |
|
virtual void save(FileStorage& fs) const = 0; |
|
|
|
// Deserializes this object from a given cv::FileStorage. |
|
virtual void load(const FileStorage& fs) = 0; |
|
|
|
}; |
|
|
|
CV_EXPORTS_W Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX); |
|
CV_EXPORTS_W Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX); |
|
CV_EXPORTS_W Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8, |
|
int grid_x=8, int grid_y=8, double threshold = DBL_MAX); |
|
|
|
enum |
|
{ |
|
COLORMAP_AUTUMN = 0, |
|
COLORMAP_BONE = 1, |
|
COLORMAP_JET = 2, |
|
COLORMAP_WINTER = 3, |
|
COLORMAP_RAINBOW = 4, |
|
COLORMAP_OCEAN = 5, |
|
COLORMAP_SUMMER = 6, |
|
COLORMAP_SPRING = 7, |
|
COLORMAP_COOL = 8, |
|
COLORMAP_HSV = 9, |
|
COLORMAP_PINK = 10, |
|
COLORMAP_HOT = 11 |
|
}; |
|
|
|
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap); |
|
|
|
CV_EXPORTS bool initModule_contrib(); |
|
} |
|
|
|
#include "opencv2/contrib/openfabmap.hpp" |
|
|
|
#endif
|
|
|