mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
118 lines
3.6 KiB
118 lines
3.6 KiB
#include "Thrust_interop.hpp" |
|
#include <opencv2/core/cuda_stream_accessor.hpp> |
|
|
|
#include <thrust/transform.h> |
|
#include <thrust/random.h> |
|
#include <thrust/sort.h> |
|
#include <thrust/system/cuda/execution_policy.h> |
|
struct prg |
|
{ |
|
float a, b; |
|
|
|
__host__ __device__ |
|
prg(float _a = 0.f, float _b = 1.f) : a(_a), b(_b) {}; |
|
|
|
__host__ __device__ |
|
float operator()(const unsigned int n) const |
|
{ |
|
thrust::default_random_engine rng; |
|
thrust::uniform_real_distribution<float> dist(a, b); |
|
rng.discard(n); |
|
|
|
return dist(rng); |
|
} |
|
}; |
|
|
|
template<typename T> struct pred_eq |
|
{ |
|
T value; |
|
int channel; |
|
__host__ __device__ |
|
pred_eq(T value_, int channel_ = 0) :value(value_), channel(channel_){} |
|
__host__ __device__ |
|
bool operator()(const T val) const |
|
{ |
|
return val == value; |
|
} |
|
template<int N> |
|
__host__ __device__ bool operator()(const cv::Vec<T, N>& val) |
|
{ |
|
if (channel < N) |
|
return val.val[channel] == value; |
|
return false; |
|
} |
|
|
|
__host__ __device__ bool operator()( const thrust::tuple<T, T, T>& val) |
|
{ |
|
if (channel == 0) |
|
return thrust::get<0>(val) == value; |
|
if (channel == 1) |
|
return thrust::get<1>(val) == value; |
|
if (channel == 2) |
|
return thrust::get<2>(val) == value; |
|
} |
|
}; |
|
template<typename T> struct pred_greater |
|
{ |
|
T value; |
|
__host__ __device__ pred_greater(T value_) : value(value_){} |
|
__host__ __device__ bool operator()(const T& val) const |
|
{ |
|
return val > value; |
|
} |
|
}; |
|
|
|
|
|
int main(void) |
|
{ |
|
// Generate a 2 channel row matrix with 100 elements. Set the first channel to be the element index, and the second to be a randomly |
|
// generated value. Sort by the randomly generated value while maintaining index association. |
|
{ |
|
cv::cuda::GpuMat d_idx(1, 100, CV_32SC2); |
|
|
|
auto keyBegin = GpuMatBeginItr<int>(d_idx, 1); |
|
auto keyEnd = GpuMatEndItr<int>(d_idx, 1); |
|
|
|
auto idxBegin = GpuMatBeginItr<int>(d_idx, 0); |
|
auto idxEnd = GpuMatEndItr<int>(d_idx, 0); |
|
|
|
thrust::sequence(idxBegin, idxEnd); |
|
thrust::transform(idxBegin, idxEnd, keyBegin, prg(0, 10)); |
|
thrust::sort_by_key(keyBegin, keyEnd, idxBegin); |
|
|
|
cv::Mat h_idx(d_idx); |
|
} |
|
|
|
// Randomly fill a row matrix with 100 elements between -1 and 1 |
|
{ |
|
cv::cuda::GpuMat d_value(1, 100, CV_32F); |
|
auto valueBegin = GpuMatBeginItr<float>(d_value); |
|
auto valueEnd = GpuMatEndItr<float>(d_value); |
|
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1)); |
|
|
|
cv::Mat h_value(d_value); |
|
} |
|
|
|
// OpenCV has count non zero, but what if you want to count a specific value? |
|
{ |
|
cv::cuda::GpuMat d_value(1, 100, CV_32S); |
|
d_value.setTo(cv::Scalar(0)); |
|
d_value.colRange(10, 50).setTo(cv::Scalar(15)); |
|
auto count = thrust::count(GpuMatBeginItr<int>(d_value), GpuMatEndItr<int>(d_value), 15); |
|
std::cout << count << std::endl; |
|
} |
|
// Randomly fill an array then copy only values greater than 0. Perform these tasks on a stream. |
|
{ |
|
cv::cuda::GpuMat d_value(1, 100, CV_32F); |
|
auto valueBegin = GpuMatBeginItr<float>(d_value); |
|
auto valueEnd = GpuMatEndItr<float>(d_value); |
|
cv::cuda::Stream stream; |
|
thrust::transform(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1)); |
|
int count = thrust::count_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, pred_greater<float>(0.0)); |
|
cv::cuda::GpuMat d_valueGreater(1, count, CV_32F); |
|
thrust::copy_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, GpuMatBeginItr<float>(d_valueGreater), pred_greater<float>(0.0)); |
|
cv::Mat h_greater(d_valueGreater); |
|
} |
|
|
|
return 0; |
|
}
|
|
|