Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1263 lines
46 KiB
1263 lines
46 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_core.hpp" |
|
#include "stat.hpp" |
|
|
|
/****************************************************************************************\ |
|
* norm * |
|
\****************************************************************************************/ |
|
|
|
namespace cv { namespace hal { |
|
|
|
extern const uchar popCountTable[256] = |
|
{ |
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 |
|
}; |
|
|
|
static const uchar popCountTable2[] = |
|
{ |
|
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4 |
|
}; |
|
|
|
static const uchar popCountTable4[] = |
|
{ |
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
|
}; |
|
|
|
|
|
int normHamming(const uchar* a, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
return -1; |
|
int i = 0; |
|
int result = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i]]; |
|
return result; |
|
} |
|
|
|
int normHamming(const uchar* a, const uchar* b, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, b, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
return -1; |
|
int i = 0; |
|
int result = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] + |
|
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i] ^ b[i]]; |
|
return result; |
|
} |
|
|
|
float normL2Sqr_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_AVX2 |
|
float CV_DECL_ALIGNED(32) buf[8]; |
|
__m256 d0 = _mm256_setzero_ps(); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m256 t0 = _mm256_sub_ps(_mm256_loadu_ps(a + j), _mm256_loadu_ps(b + j)); |
|
#if CV_FMA3 |
|
d0 = _mm256_fmadd_ps(t0, t0, d0); |
|
#else |
|
d0 = _mm256_add_ps(d0, _mm256_mul_ps(t0, t0)); |
|
#endif |
|
} |
|
_mm256_store_ps(buf, d0); |
|
d = buf[0] + buf[1] + buf[2] + buf[3] + buf[4] + buf[5] + buf[6] + buf[7]; |
|
#elif CV_SSE |
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); |
|
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); |
|
d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0)); |
|
d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1)); |
|
} |
|
_mm_store_ps(buf, _mm_add_ps(d0, d1)); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3]; |
|
d += t0*t0 + t1*t1 + t2*t2 + t3*t3; |
|
} |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
{ |
|
float t = a[j] - b[j]; |
|
d += t*t; |
|
} |
|
return d; |
|
} |
|
|
|
|
|
float normL1_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_SSE |
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
static const int CV_DECL_ALIGNED(16) absbuf[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; |
|
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); |
|
__m128 absmask = _mm_load_ps((const float*)absbuf); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); |
|
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); |
|
d0 = _mm_add_ps(d0, _mm_and_ps(t0, absmask)); |
|
d1 = _mm_add_ps(d1, _mm_and_ps(t1, absmask)); |
|
} |
|
_mm_store_ps(buf, _mm_add_ps(d0, d1)); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#elif CV_NEON |
|
float32x4_t v_sum = vdupq_n_f32(0.0f); |
|
for ( ; j <= n - 4; j += 4) |
|
v_sum = vaddq_f32(v_sum, vabdq_f32(vld1q_f32(a + j), vld1q_f32(b + j))); |
|
|
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
vst1q_f32(buf, v_sum); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
} |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
int normL1_(const uchar* a, const uchar* b, int n) |
|
{ |
|
int j = 0, d = 0; |
|
#if CV_SSE |
|
__m128i d0 = _mm_setzero_si128(); |
|
|
|
for( ; j <= n - 16; j += 16 ) |
|
{ |
|
__m128i t0 = _mm_loadu_si128((const __m128i*)(a + j)); |
|
__m128i t1 = _mm_loadu_si128((const __m128i*)(b + j)); |
|
|
|
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); |
|
} |
|
|
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
__m128i t0 = _mm_cvtsi32_si128(*(const int*)(a + j)); |
|
__m128i t1 = _mm_cvtsi32_si128(*(const int*)(b + j)); |
|
|
|
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); |
|
} |
|
d = _mm_cvtsi128_si32(_mm_add_epi32(d0, _mm_unpackhi_epi64(d0, d0))); |
|
#elif CV_NEON |
|
uint32x4_t v_sum = vdupq_n_u32(0.0f); |
|
for ( ; j <= n - 16; j += 16) |
|
{ |
|
uint8x16_t v_dst = vabdq_u8(vld1q_u8(a + j), vld1q_u8(b + j)); |
|
uint16x8_t v_low = vmovl_u8(vget_low_u8(v_dst)), v_high = vmovl_u8(vget_high_u8(v_dst)); |
|
v_sum = vaddq_u32(v_sum, vaddl_u16(vget_low_u16(v_low), vget_low_u16(v_high))); |
|
v_sum = vaddq_u32(v_sum, vaddl_u16(vget_high_u16(v_low), vget_high_u16(v_high))); |
|
} |
|
|
|
uint CV_DECL_ALIGNED(16) buf[4]; |
|
vst1q_u32(buf, v_sum); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
} |
|
} |
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
}} //cv::hal |
|
|
|
//================================================================================================== |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename ST> int |
|
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, ST(cv_abs(src[k]))); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += cv_abs(src[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
T v = src[k]; |
|
result += (ST)v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src1, src2, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, (ST)std::abs(src1[k] - src2[k])); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += std::abs(src1[k] - src2[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
ST v = src1[k] - src2[k]; |
|
result += v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \ |
|
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return norm##L##_(src, mask, r, len, cn); } \ |
|
static int normDiff##L##_##suffix(const type* src1, const type* src2, \ |
|
const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); } |
|
|
|
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \ |
|
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \ |
|
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \ |
|
CV_DEF_NORM_FUNC(L2, suffix, type, l2type) |
|
|
|
CV_DEF_NORM_ALL(8u, uchar, int, int, int) |
|
CV_DEF_NORM_ALL(8s, schar, int, int, int) |
|
CV_DEF_NORM_ALL(16u, ushort, int, int, double) |
|
CV_DEF_NORM_ALL(16s, short, int, int, double) |
|
CV_DEF_NORM_ALL(32s, int, int, double, double) |
|
CV_DEF_NORM_ALL(32f, float, float, double, double) |
|
CV_DEF_NORM_ALL(64f, double, double, double, double) |
|
|
|
|
|
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int); |
|
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int); |
|
|
|
static NormFunc getNormFunc(int normType, int depth) |
|
{ |
|
static NormFunc normTab[3][8] = |
|
{ |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s), |
|
(NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s), |
|
(NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s), |
|
(NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0 |
|
} |
|
}; |
|
|
|
return normTab[normType][depth]; |
|
} |
|
|
|
static NormDiffFunc getNormDiffFunc(int normType, int depth) |
|
{ |
|
static NormDiffFunc normDiffTab[3][8] = |
|
{ |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s, |
|
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s, |
|
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f), |
|
(NormDiffFunc)normDiffInf_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s, |
|
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s, |
|
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f), |
|
(NormDiffFunc)normDiffL1_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s, |
|
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s, |
|
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f), |
|
(NormDiffFunc)normDiffL2_64f, 0 |
|
} |
|
}; |
|
|
|
return normDiffTab[normType][depth]; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_norm( InputArray _src, int normType, InputArray _mask, double & result ) |
|
{ |
|
const ocl::Device & d = ocl::Device::getDefault(); |
|
|
|
#ifdef __ANDROID__ |
|
if (d.isNVidia()) |
|
return false; |
|
#endif |
|
const int cn = _src.channels(); |
|
if (cn > 4) |
|
return false; |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type); |
|
bool doubleSupport = d.doubleFPConfig() > 0, |
|
haveMask = _mask.kind() != _InputArray::NONE; |
|
|
|
if ( !(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) || |
|
(!doubleSupport && depth == CV_64F)) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
|
|
if (normType == NORM_INF) |
|
{ |
|
if (!ocl_minMaxIdx(_src, NULL, &result, NULL, NULL, _mask, |
|
std::max(depth, CV_32S), depth != CV_8U && depth != CV_16U)) |
|
return false; |
|
} |
|
else if (normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) |
|
{ |
|
Scalar sc; |
|
bool unstype = depth == CV_8U || depth == CV_16U; |
|
|
|
if ( !ocl_sum(haveMask ? src : src.reshape(1), sc, normType == NORM_L2 || normType == NORM_L2SQR ? |
|
OCL_OP_SUM_SQR : (unstype ? OCL_OP_SUM : OCL_OP_SUM_ABS), _mask) ) |
|
return false; |
|
|
|
double s = 0.0; |
|
for (int i = 0; i < (haveMask ? cn : 1); ++i) |
|
s += sc[i]; |
|
|
|
result = normType == NORM_L1 || normType == NORM_L2SQR ? s : std::sqrt(s); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_norm(Mat &src, int normType, Mat &mask, double &result) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
|
|
if( (src.dims == 2 || (src.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormFuncC1 ippiNorm_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNorm_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *); |
|
ippiMaskNormFuncC3 ippiNorm_C3CMR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_32f_C3CMR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_32f_C3CMR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_32f_C3CMR : |
|
0) : 0; |
|
if( ippiNorm_C3CMR ) |
|
{ |
|
Ipp64f norm1, norm2, norm3; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) |
|
{ |
|
Ipp64f norm = |
|
normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : |
|
normType == NORM_L1 ? norm1 + norm2 + norm3 : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : |
|
0; |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src.channels(), rows }; |
|
int type = src.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormFuncHint)(const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormFuncNoHint)(const void *, int, IppiSize, Ipp64f *); |
|
ippiNormFuncHint ippiNormHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormFuncNoHint ippiNorm = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16s_C1R : |
|
type == CV_32FC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormHint || ippiNorm ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormHint ? CV_INSTRUMENT_FUN_IPP(ippiNormHint, src.ptr(), (int)src.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm, src.ptr(), (int)src.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(normType); CV_UNUSED(mask); CV_UNUSED(result); |
|
#endif |
|
return false; |
|
} |
|
#endif |
|
|
|
} // cv:: |
|
|
|
double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
normType &= NORM_TYPE_MASK; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || |
|
normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && _src.type() == CV_8U) ); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
double _result = 0; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_norm(_src, normType, _mask, _result), |
|
_result) |
|
#endif |
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(src, normType, mask, _result), _result); |
|
|
|
int depth = src.depth(), cn = src.channels(); |
|
if( src.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src.total()*cn; |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( depth == CV_32F ) |
|
{ |
|
const float* data = src.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
if( depth == CV_8U ) |
|
{ |
|
const uchar* data = src.ptr<uchar>(); |
|
|
|
if( normType == NORM_HAMMING ) |
|
{ |
|
return hal::normHamming(data, (int)len); |
|
} |
|
|
|
if( normType == NORM_HAMMING2 ) |
|
{ |
|
return hal::normHamming(data, (int)len, 2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_and(src, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]{}; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
result += hal::normHamming(ptrs[0], total, cellSize); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
NormFunc func = getNormFunc(normType >> 1, depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]{}; |
|
union |
|
{ |
|
double d; |
|
int i; |
|
float f; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); |
|
int isum = 0; |
|
int *ibuf = &result.i; |
|
size_t esz = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn; |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
ibuf = &isum; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if( ptrs[1] ) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
; |
|
else if( depth == CV_32F ) |
|
result.d = result.f; |
|
else |
|
result.d = result.i; |
|
} |
|
else if( normType == NORM_L2 ) |
|
result.d = std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
//================================================================================================== |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask, double & result ) |
|
{ |
|
#ifdef __ANDROID__ |
|
if (ocl::Device::getDefault().isNVidia()) |
|
return false; |
|
#endif |
|
|
|
Scalar sc1, sc2; |
|
int cn = _src1.channels(); |
|
if (cn > 4) |
|
return false; |
|
int type = _src1.type(), depth = CV_MAT_DEPTH(type); |
|
bool relative = (normType & NORM_RELATIVE) != 0; |
|
normType &= ~NORM_RELATIVE; |
|
bool normsum = normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR; |
|
|
|
#ifdef __APPLE__ |
|
if(normType == NORM_L1 && type == CV_16UC3 && !_mask.empty()) |
|
return false; |
|
#endif |
|
|
|
if (normsum) |
|
{ |
|
if (!ocl_sum(_src1, sc1, normType == NORM_L2 || normType == NORM_L2SQR ? |
|
OCL_OP_SUM_SQR : OCL_OP_SUM, _mask, _src2, relative, sc2)) |
|
return false; |
|
} |
|
else |
|
{ |
|
if (!ocl_minMaxIdx(_src1, NULL, &sc1[0], NULL, NULL, _mask, std::max(CV_32S, depth), |
|
false, _src2, relative ? &sc2[0] : NULL)) |
|
return false; |
|
cn = 1; |
|
} |
|
|
|
double s2 = 0; |
|
for (int i = 0; i < cn; ++i) |
|
{ |
|
result += sc1[i]; |
|
if (relative) |
|
s2 += sc2[i]; |
|
} |
|
|
|
if (normType == NORM_L2) |
|
{ |
|
result = std::sqrt(result); |
|
if (relative) |
|
s2 = std::sqrt(s2); |
|
} |
|
|
|
if (relative) |
|
result /= (s2 + DBL_EPSILON); |
|
|
|
return true; |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
namespace cv |
|
{ |
|
static bool ipp_norm(InputArray _src1, InputArray _src2, int normType, InputArray _mask, double &result) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
|
|
if( normType & CV_RELATIVE ) |
|
{ |
|
normType &= NORM_TYPE_MASK; |
|
|
|
size_t total_size = src1.total(); |
|
int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src1.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormDiffFuncC1 ippiNormRel_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNormRel_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormRel_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src1.channels(), rows }; |
|
int type = src1.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormRelFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormRelFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiNormRelFuncHint ippiNormRelHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormRelFuncNoHint ippiNormRel = |
|
normType == NORM_INF ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16s_C1R : |
|
type == CV_32F ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormRelHint || ippiNormRel ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormRelHint ? CV_INSTRUMENT_FUN_IPP(ippiNormRelHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNormRel, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
normType &= NORM_TYPE_MASK; |
|
|
|
size_t total_size = src1.total(); |
|
int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src1.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormDiffFuncC1 ippiNormDiff_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNormDiff_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC3)(const void *, int, const void *, int, const void *, int, IppiSize, int, Ipp64f *); |
|
ippiMaskNormDiffFuncC3 ippiNormDiff_C3CMR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_32f_C3CMR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_32f_C3CMR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_32f_C3CMR : |
|
0) : 0; |
|
if (cv::ipp::getIppTopFeatures() & ( |
|
#if IPP_VERSION_X100 >= 201700 |
|
ippCPUID_AVX512F | |
|
#endif |
|
ippCPUID_AVX2) |
|
) // IPP_DISABLE_NORM_16UC3_mask_small (#11399) |
|
{ |
|
if (normType == NORM_L1 && type == CV_16UC3 && sz.width < 16) |
|
return false; |
|
} |
|
if( ippiNormDiff_C3CMR ) |
|
{ |
|
Ipp64f norm1, norm2, norm3; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) |
|
{ |
|
Ipp64f norm = |
|
normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : |
|
normType == NORM_L1 ? norm1 + norm2 + norm3 : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : |
|
0; |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src1.channels(), rows }; |
|
int type = src1.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormDiffFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormDiffFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiNormDiffFuncHint ippiNormDiffHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormDiffFuncNoHint ippiNormDiff = |
|
normType == NORM_INF ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16s_C1R : |
|
type == CV_32F ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormDiffHint || ippiNormDiff ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormDiffHint ? CV_INSTRUMENT_FUN_IPP(ippiNormDiffHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(_src1); CV_UNUSED(_src2); CV_UNUSED(normType); CV_UNUSED(_mask); CV_UNUSED(result); |
|
#endif |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
|
|
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert( _src1.sameSize(_src2) && _src1.type() == _src2.type() ); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
double _result = 0; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src1.isUMat()), |
|
ocl_norm(_src1, _src2, normType, _mask, _result), |
|
_result) |
|
#endif |
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(_src1, _src2, normType, _mask, _result), _result); |
|
|
|
if( normType & CV_RELATIVE ) |
|
{ |
|
return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON); |
|
} |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
int depth = src1.depth(), cn = src1.channels(); |
|
|
|
normType &= 7; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || |
|
normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) ); |
|
|
|
if( src1.isContinuous() && src2.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src1.total()*src1.channels(); |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( src1.depth() == CV_32F ) |
|
{ |
|
const float* data1 = src1.ptr<float>(); |
|
const float* data2 = src2.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_xor(src1, src2, temp); |
|
bitwise_and(temp, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src1, &src2, 0}; |
|
uchar* ptrs[2]{}; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
result += hal::normHamming(ptrs[0], ptrs[1], total, cellSize); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
NormDiffFunc func = getNormDiffFunc(normType >> 1, depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src1, &src2, &mask, 0}; |
|
uchar* ptrs[3]{}; |
|
union |
|
{ |
|
double d; |
|
float f; |
|
int i; |
|
unsigned u; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); |
|
unsigned isum = 0; |
|
unsigned *ibuf = &result.u; |
|
size_t esz = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
ibuf = &isum; |
|
esz = src1.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], ptrs[1], ptrs[2], (uchar*)ibuf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
ptrs[1] += bsz*esz; |
|
if( ptrs[2] ) |
|
ptrs[2] += bsz; |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
; |
|
else if( depth == CV_32F ) |
|
result.d = result.f; |
|
else |
|
result.d = result.u; |
|
} |
|
else if( normType == NORM_L2 ) |
|
result.d = std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
cv::Hamming::ResultType cv::Hamming::operator()( const unsigned char* a, const unsigned char* b, int size ) const |
|
{ |
|
return cv::hal::normHamming(a, b, size); |
|
} |
|
|
|
double cv::PSNR(InputArray _src1, InputArray _src2, double R) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
//Input arrays must have depth CV_8U |
|
CV_Assert( _src1.type() == _src2.type() ); |
|
|
|
double diff = std::sqrt(norm(_src1, _src2, NORM_L2SQR)/(_src1.total()*_src1.channels())); |
|
return 20*log10(R/(diff+DBL_EPSILON)); |
|
}
|
|
|