mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
416 lines
18 KiB
416 lines
18 KiB
/* |
|
* jdct.h |
|
* |
|
* Copyright (C) 1994-1996, Thomas G. Lane. |
|
* Modified 2002-2017 by Guido Vollbeding. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This include file contains common declarations for the forward and |
|
* inverse DCT modules. These declarations are private to the DCT managers |
|
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. |
|
* The individual DCT algorithms are kept in separate files to ease |
|
* machine-dependent tuning (e.g., assembly coding). |
|
*/ |
|
|
|
|
|
/* |
|
* A forward DCT routine is given a pointer to an input sample array and |
|
* a pointer to a work area of type DCTELEM[]; the DCT is to be performed |
|
* in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32 |
|
* for 12-bit samples. (NOTE: Floating-point DCT implementations use an |
|
* array of type FAST_FLOAT, instead.) |
|
* The input data is to be fetched from the sample array starting at a |
|
* specified column. (Any row offset needed will be applied to the array |
|
* pointer before it is passed to the FDCT code.) |
|
* Note that the number of samples fetched by the FDCT routine is |
|
* DCT_h_scaled_size * DCT_v_scaled_size. |
|
* The DCT outputs are returned scaled up by a factor of 8; they therefore |
|
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This |
|
* convention improves accuracy in integer implementations and saves some |
|
* work in floating-point ones. |
|
* Quantization of the output coefficients is done by jcdctmgr.c. |
|
*/ |
|
|
|
#if BITS_IN_JSAMPLE == 8 |
|
typedef int DCTELEM; /* 16 or 32 bits is fine */ |
|
#else |
|
typedef INT32 DCTELEM; /* must have 32 bits */ |
|
#endif |
|
|
|
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data, |
|
JSAMPARRAY sample_data, |
|
JDIMENSION start_col)); |
|
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data, |
|
JSAMPARRAY sample_data, |
|
JDIMENSION start_col)); |
|
|
|
|
|
/* |
|
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer |
|
* to an output sample array. The routine must dequantize the input data as |
|
* well as perform the IDCT; for dequantization, it uses the multiplier table |
|
* pointed to by compptr->dct_table. The output data is to be placed into the |
|
* sample array starting at a specified column. (Any row offset needed will |
|
* be applied to the array pointer before it is passed to the IDCT code.) |
|
* Note that the number of samples emitted by the IDCT routine is |
|
* DCT_h_scaled_size * DCT_v_scaled_size. |
|
*/ |
|
|
|
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */ |
|
|
|
/* |
|
* Each IDCT routine has its own ideas about the best dct_table element type. |
|
*/ |
|
|
|
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ |
|
#if BITS_IN_JSAMPLE == 8 |
|
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ |
|
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ |
|
#else |
|
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ |
|
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ |
|
#endif |
|
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ |
|
|
|
|
|
/* |
|
* Each IDCT routine is responsible for range-limiting its results and |
|
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could |
|
* be quite far out of range if the input data is corrupt, so a bulletproof |
|
* range-limiting step is required. We use a mask-and-table-lookup method |
|
* to do the combined operations quickly, assuming that RANGE_CENTER |
|
* (defined in jpegint.h) is a power of 2. See the comments with |
|
* prepare_range_limit_table (in jdmaster.c) for more info. |
|
*/ |
|
|
|
#define RANGE_MASK (RANGE_CENTER * 2 - 1) |
|
#define RANGE_SUBSET (RANGE_CENTER - CENTERJSAMPLE) |
|
|
|
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit - RANGE_SUBSET) |
|
|
|
|
|
/* Short forms of external names for systems with brain-damaged linkers. */ |
|
|
|
#ifdef NEED_SHORT_EXTERNAL_NAMES |
|
#define jpeg_fdct_islow jFDislow |
|
#define jpeg_fdct_ifast jFDifast |
|
#define jpeg_fdct_float jFDfloat |
|
#define jpeg_fdct_7x7 jFD7x7 |
|
#define jpeg_fdct_6x6 jFD6x6 |
|
#define jpeg_fdct_5x5 jFD5x5 |
|
#define jpeg_fdct_4x4 jFD4x4 |
|
#define jpeg_fdct_3x3 jFD3x3 |
|
#define jpeg_fdct_2x2 jFD2x2 |
|
#define jpeg_fdct_1x1 jFD1x1 |
|
#define jpeg_fdct_9x9 jFD9x9 |
|
#define jpeg_fdct_10x10 jFD10x10 |
|
#define jpeg_fdct_11x11 jFD11x11 |
|
#define jpeg_fdct_12x12 jFD12x12 |
|
#define jpeg_fdct_13x13 jFD13x13 |
|
#define jpeg_fdct_14x14 jFD14x14 |
|
#define jpeg_fdct_15x15 jFD15x15 |
|
#define jpeg_fdct_16x16 jFD16x16 |
|
#define jpeg_fdct_16x8 jFD16x8 |
|
#define jpeg_fdct_14x7 jFD14x7 |
|
#define jpeg_fdct_12x6 jFD12x6 |
|
#define jpeg_fdct_10x5 jFD10x5 |
|
#define jpeg_fdct_8x4 jFD8x4 |
|
#define jpeg_fdct_6x3 jFD6x3 |
|
#define jpeg_fdct_4x2 jFD4x2 |
|
#define jpeg_fdct_2x1 jFD2x1 |
|
#define jpeg_fdct_8x16 jFD8x16 |
|
#define jpeg_fdct_7x14 jFD7x14 |
|
#define jpeg_fdct_6x12 jFD6x12 |
|
#define jpeg_fdct_5x10 jFD5x10 |
|
#define jpeg_fdct_4x8 jFD4x8 |
|
#define jpeg_fdct_3x6 jFD3x6 |
|
#define jpeg_fdct_2x4 jFD2x4 |
|
#define jpeg_fdct_1x2 jFD1x2 |
|
#define jpeg_idct_islow jRDislow |
|
#define jpeg_idct_ifast jRDifast |
|
#define jpeg_idct_float jRDfloat |
|
#define jpeg_idct_7x7 jRD7x7 |
|
#define jpeg_idct_6x6 jRD6x6 |
|
#define jpeg_idct_5x5 jRD5x5 |
|
#define jpeg_idct_4x4 jRD4x4 |
|
#define jpeg_idct_3x3 jRD3x3 |
|
#define jpeg_idct_2x2 jRD2x2 |
|
#define jpeg_idct_1x1 jRD1x1 |
|
#define jpeg_idct_9x9 jRD9x9 |
|
#define jpeg_idct_10x10 jRD10x10 |
|
#define jpeg_idct_11x11 jRD11x11 |
|
#define jpeg_idct_12x12 jRD12x12 |
|
#define jpeg_idct_13x13 jRD13x13 |
|
#define jpeg_idct_14x14 jRD14x14 |
|
#define jpeg_idct_15x15 jRD15x15 |
|
#define jpeg_idct_16x16 jRD16x16 |
|
#define jpeg_idct_16x8 jRD16x8 |
|
#define jpeg_idct_14x7 jRD14x7 |
|
#define jpeg_idct_12x6 jRD12x6 |
|
#define jpeg_idct_10x5 jRD10x5 |
|
#define jpeg_idct_8x4 jRD8x4 |
|
#define jpeg_idct_6x3 jRD6x3 |
|
#define jpeg_idct_4x2 jRD4x2 |
|
#define jpeg_idct_2x1 jRD2x1 |
|
#define jpeg_idct_8x16 jRD8x16 |
|
#define jpeg_idct_7x14 jRD7x14 |
|
#define jpeg_idct_6x12 jRD6x12 |
|
#define jpeg_idct_5x10 jRD5x10 |
|
#define jpeg_idct_4x8 jRD4x8 |
|
#define jpeg_idct_3x6 jRD3x8 |
|
#define jpeg_idct_2x4 jRD2x4 |
|
#define jpeg_idct_1x2 jRD1x2 |
|
#endif /* NEED_SHORT_EXTERNAL_NAMES */ |
|
|
|
/* Extern declarations for the forward and inverse DCT routines. */ |
|
|
|
EXTERN(void) jpeg_fdct_islow |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_ifast |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_float |
|
JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_7x7 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_6x6 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_5x5 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_4x4 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_3x3 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_2x2 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_1x1 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_9x9 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_10x10 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_11x11 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_12x12 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_13x13 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_14x14 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_15x15 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_16x16 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_16x8 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_14x7 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_12x6 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_10x5 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_8x4 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_6x3 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_4x2 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_2x1 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_8x16 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_7x14 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_6x12 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_5x10 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_4x8 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_3x6 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_2x4 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
EXTERN(void) jpeg_fdct_1x2 |
|
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
|
|
|
EXTERN(void) jpeg_idct_islow |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_ifast |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_float |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_7x7 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_6x6 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_5x5 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_4x4 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_3x3 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_2x2 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_1x1 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_9x9 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_10x10 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_11x11 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_12x12 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_13x13 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_14x14 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_15x15 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_16x16 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_16x8 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_14x7 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_12x6 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_10x5 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_8x4 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_6x3 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_4x2 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_2x1 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_8x16 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_7x14 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_6x12 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_5x10 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_4x8 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_3x6 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_2x4 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
EXTERN(void) jpeg_idct_1x2 |
|
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
|
|
|
|
|
/* |
|
* Macros for handling fixed-point arithmetic; these are used by many |
|
* but not all of the DCT/IDCT modules. |
|
* |
|
* All values are expected to be of type INT32. |
|
* Fractional constants are scaled left by CONST_BITS bits. |
|
* CONST_BITS is defined within each module using these macros, |
|
* and may differ from one module to the next. |
|
*/ |
|
|
|
#define ONE ((INT32) 1) |
|
#define CONST_SCALE (ONE << CONST_BITS) |
|
|
|
/* Convert a positive real constant to an integer scaled by CONST_SCALE. |
|
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time, |
|
* thus causing a lot of useless floating-point operations at run time. |
|
*/ |
|
|
|
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) |
|
|
|
/* Descale and correctly round an INT32 value that's scaled by N bits. |
|
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
|
* the fudge factor is correct for either sign of X. |
|
*/ |
|
|
|
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) |
|
|
|
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
|
* This macro is used only when the two inputs will actually be no more than |
|
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a |
|
* full 32x32 multiply. This provides a useful speedup on many machines. |
|
* Unfortunately there is no way to specify a 16x16->32 multiply portably |
|
* in C, but some C compilers will do the right thing if you provide the |
|
* correct combination of casts. |
|
*/ |
|
|
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
|
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) |
|
#endif |
|
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
|
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) |
|
#endif |
|
|
|
#ifndef MULTIPLY16C16 /* default definition */ |
|
#define MULTIPLY16C16(var,const) ((var) * (const)) |
|
#endif |
|
|
|
/* Same except both inputs are variables. */ |
|
|
|
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
|
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) |
|
#endif |
|
|
|
#ifndef MULTIPLY16V16 /* default definition */ |
|
#define MULTIPLY16V16(var1,var2) ((var1) * (var2)) |
|
#endif |
|
|
|
/* Like RIGHT_SHIFT, but applies to a DCTELEM. |
|
* We assume that int right shift is unsigned if INT32 right shift is. |
|
*/ |
|
|
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
|
#define ISHIFT_TEMPS DCTELEM ishift_temp; |
|
#if BITS_IN_JSAMPLE == 8 |
|
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
|
#else |
|
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
|
#endif |
|
#define IRIGHT_SHIFT(x,shft) \ |
|
((ishift_temp = (x)) < 0 ? \ |
|
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ |
|
(ishift_temp >> (shft))) |
|
#else |
|
#define ISHIFT_TEMPS |
|
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
|
#endif
|
|
|