mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.5 KiB
77 lines
2.5 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using cv::ml::TrainData; |
|
using cv::ml::EM; |
|
using cv::ml::KNearest; |
|
|
|
TEST(ML_KNearest, accuracy) |
|
{ |
|
int sizesArr[] = { 500, 700, 800 }; |
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; |
|
|
|
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels; |
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); |
|
Mat means; |
|
vector<Mat> covs; |
|
defaultDistribs( means, covs ); |
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); |
|
|
|
Mat testData( pointsCount, 2, CV_32FC1 ); |
|
Mat testLabels; |
|
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); |
|
|
|
{ |
|
SCOPED_TRACE("Default"); |
|
Mat bestLabels; |
|
float err = 1000; |
|
Ptr<KNearest> knn = KNearest::create(); |
|
knn->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
knn->findNearest(testData, 4, bestLabels); |
|
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true )); |
|
EXPECT_LE(err, 0.01f); |
|
} |
|
{ |
|
// TODO: broken |
|
#if 0 |
|
SCOPED_TRACE("KDTree"); |
|
Mat bestLabels; |
|
float err = 1000; |
|
Ptr<KNearest> knn = KNearest::create(); |
|
knn->setAlgorithmType(KNearest::KDTREE); |
|
knn->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
knn->findNearest(testData, 4, bestLabels); |
|
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true )); |
|
EXPECT_LE(err, 0.01f); |
|
#endif |
|
} |
|
} |
|
|
|
TEST(ML_KNearest, regression_12347) |
|
{ |
|
Mat xTrainData = (Mat_<float>(5,2) << 1, 1.1, 1.1, 1, 2, 2, 2.1, 2, 2.1, 2.1); |
|
Mat yTrainLabels = (Mat_<float>(5,1) << 1, 1, 2, 2, 2); |
|
Ptr<KNearest> knn = KNearest::create(); |
|
knn->train(xTrainData, ml::ROW_SAMPLE, yTrainLabels); |
|
|
|
Mat xTestData = (Mat_<float>(2,2) << 1.1, 1.1, 2, 2.2); |
|
Mat zBestLabels, neighbours, dist; |
|
// check output shapes: |
|
int K = 16, Kexp = std::min(K, xTrainData.rows); |
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
EXPECT_EQ(xTestData.rows, zBestLabels.rows); |
|
EXPECT_EQ(neighbours.cols, Kexp); |
|
EXPECT_EQ(dist.cols, Kexp); |
|
// see if the result is still correct: |
|
K = 2; |
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
EXPECT_EQ(1, zBestLabels.at<float>(0,0)); |
|
EXPECT_EQ(2, zBestLabels.at<float>(1,0)); |
|
} |
|
|
|
}} // namespace
|
|
|