Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

188 lines
6.5 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "precomp.hpp"
#include <ade/util/zip_range.hpp> // util::indexed
#include <ade/graph.hpp>
#include <ade/passes/check_cycles.hpp>
#include <opencv2/gapi/gcompoundkernel.hpp> // compound::backend()
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/infer.hpp> // GNetPackage
#include "compiler/gmodel.hpp"
#include "compiler/passes/passes.hpp"
#include "api/gbackend_priv.hpp"
#include "backends/common/gbackend.hpp"
#include "compiler/gmodelbuilder.hpp"
#include "logger.hpp" // GAPI_LOG
#include "api/gproto_priv.hpp" // is_dynamic, rewrap
namespace
{
struct ImplInfo
{
cv::GKernelImpl impl;
cv::GArgs in_args;
};
// Generaly the algorithm is following
//
// 1. Get GCompoundKernel implementation
// 2. Create GCompoundContext
// 3. Run GCompoundKernel with GCompoundContext
// 4. Build subgraph from inputs/outputs GCompoundKernel
// 5. Replace compound node to subgraph
void expand(ade::Graph& g, ade::NodeHandle nh, const ImplInfo& impl_info)
{
cv::gimpl::GModel::Graph gr(g);
auto compound_impl = cv::util::any_cast<cv::detail::GCompoundKernel>(impl_info.impl.opaque);
// GCompoundContext instantiates its own objects
// in accordance with the RcDescs from in_args
cv::detail::GCompoundContext context(impl_info.in_args);
compound_impl.apply(context);
cv::GProtoArgs ins, outs;
ins.reserve(context.m_args.size());
outs.reserve(context.m_results.size());
// Inputs can be non-dynamic types.
// Such inputs are not used when building a graph
for (const auto& arg : context.m_args)
{
if (cv::gimpl::proto::is_dynamic(arg))
{
ins.emplace_back(cv::gimpl::proto::rewrap(arg));
}
}
ade::util::transform(context.m_results, std::back_inserter(outs), &cv::gimpl::proto::rewrap);
cv::gimpl::GModelBuilder builder(g);
// Build the subgraph graph which will need to replace the compound node
const auto& proto_slots = builder.put(ins, outs);
const auto& in_nhs = std::get<2>(proto_slots);
const auto& out_nhs = std::get<3>(proto_slots);
auto sorted_in_nhs = cv::gimpl::GModel::orderedInputs(gr, nh);
auto sorted_out_nhs = cv::gimpl::GModel::orderedOutputs(gr, nh);
// Reconnect expanded kernels from graph data objects
// to subgraph data objects, then drop that graph data objects
for (const auto& it : ade::util::zip(in_nhs, sorted_in_nhs))
{
const auto& subgr_in_nh = std::get<0>(it);
const auto& comp_in_nh = std::get<1>(it);
cv::gimpl::GModel::redirectReaders(gr, subgr_in_nh, comp_in_nh);
gr.erase(subgr_in_nh);
}
gr.erase(nh);
for (const auto& it : ade::util::zip(out_nhs, sorted_out_nhs))
{
const auto& subgr_out_nh = std::get<0>(it);
const auto& comp_out_nh = std::get<1>(it);
cv::gimpl::GModel::redirectWriter(gr, subgr_out_nh, comp_out_nh);
gr.erase(subgr_out_nh);
}
}
} // anonymous namespace
// This pass, given the network package, associates every infer[list] node
// with particular inference backend and its parameters.
void cv::gimpl::passes::bindNetParams(ade::passes::PassContext &ctx,
const gapi::GNetPackage &pkg)
{
GModel::Graph gr(ctx.graph);
ade::TypedGraph<NetworkParams> pgr(ctx.graph);
for (const auto &nh : gr.nodes())
{
if (gr.metadata(nh).get<NodeType>().t == NodeType::OP)
{
auto &op = gr.metadata(nh).get<Op>();
if (op.k.tag.empty())
continue;
// FIXME: What if there's more than one???
const auto it = ade::util::find_if(pkg.networks,
[&](const cv::gapi::GNetParam &p) {
return p.tag == op.k.tag;
});
if (it == std::end(pkg.networks))
continue;
pgr.metadata(nh).set(NetworkParams{it->params});
}
}
}
// This pass, given the kernel package, selects a kernel implementation
// for every operation in the graph
void cv::gimpl::passes::resolveKernels(ade::passes::PassContext &ctx,
const gapi::GKernelPackage &kernels)
{
std::unordered_set<cv::gapi::GBackend> active_backends;
GModel::Graph gr(ctx.graph);
for (const auto &nh : gr.nodes())
{
if (gr.metadata(nh).get<NodeType>().t == NodeType::OP)
{
auto &op = gr.metadata(nh).get<Op>();
cv::gapi::GBackend selected_backend;
cv::GKernelImpl selected_impl;
std::tie(selected_backend, selected_impl) = kernels.lookup(op.k.name);
selected_backend.priv().unpackKernel(ctx.graph, nh, selected_impl);
op.backend = selected_backend;
active_backends.insert(selected_backend);
}
}
gr.metadata().set(ActiveBackends{active_backends});
}
void cv::gimpl::passes::expandKernels(ade::passes::PassContext &ctx, const gapi::GKernelPackage &kernels)
{
GModel::Graph gr(ctx.graph);
// Repeat the loop while there are compound kernels.
// Restart procedure after every successful unrolling
bool has_compound_kernel = true;
while (has_compound_kernel)
{
has_compound_kernel = false;
for (const auto& nh : gr.nodes())
{
if (gr.metadata(nh).get<NodeType>().t == NodeType::OP)
{
const auto& op = gr.metadata(nh).get<Op>();
cv::gapi::GBackend selected_backend;
cv::GKernelImpl selected_impl;
std::tie(selected_backend, selected_impl) = kernels.lookup(op.k.name);
if (selected_backend == cv::gapi::compound::backend())
{
has_compound_kernel = true;
expand(ctx.graph, nh, ImplInfo{selected_impl, op.args});
break;
}
}
}
}
GAPI_LOG_INFO(NULL, "Final graph: " << ctx.graph.nodes().size() << " nodes" << std::endl);
}