mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
781 lines
25 KiB
781 lines
25 KiB
// ////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
// |
|
|
|
// ////////////////////////////////////////////////////////////////////////////////////// |
|
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu |
|
// |
|
// LICENSE AGREEMENT |
|
// Copyright (c) 2015 The Regents of the University of California (Regents) |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are met: |
|
// 1. Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// 2. Redistributions in binary form must reproduce the above copyright |
|
// notice, this list of conditions and the following disclaimer in the |
|
// documentation and/or other materials provided with the distribution. |
|
// 3. Neither the name of the University nor the |
|
// names of its contributors may be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY |
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY |
|
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
|
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
|
|
QUnit.module('Image Processing', {}); |
|
|
|
QUnit.test('applyColorMap', function(assert) { |
|
{ |
|
let src = cv.matFromArray(2, 1, cv.CV_8U, [50,100]); |
|
cv.applyColorMap(src, src, cv.COLORMAP_BONE); |
|
|
|
// Verify result. |
|
let expected = new Uint8Array([60,44,44,119,89,87]); |
|
|
|
assert.deepEqual(src.data, expected); |
|
src.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('blendLinear', function(assert) { |
|
{ |
|
let src1 = cv.matFromArray(2, 1, cv.CV_8U, [50,100]); |
|
let src2 = cv.matFromArray(2, 1, cv.CV_8U, [200,20]); |
|
let weights1 = cv.matFromArray(2, 1, cv.CV_32F, [0.4,0.5]); |
|
let weights2 = cv.matFromArray(2, 1, cv.CV_32F, [0.6,0.5]); |
|
let dst = new cv.Mat(); |
|
cv.blendLinear(src1, src2, weights1, weights2, dst); |
|
|
|
// Verify result. |
|
let expected = new Uint8Array([140,60]); |
|
|
|
assert.deepEqual(dst.data, expected); |
|
src1.delete(); |
|
src2.delete(); |
|
weights1.delete(); |
|
weights2.delete(); |
|
dst.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('createHanningWindow', function(assert) { |
|
{ |
|
let dst = new cv.Mat(); |
|
cv.createHanningWindow(dst, new cv.Size(5, 3), cv.CV_32F); |
|
|
|
// Verify result. |
|
let expected = cv.matFromArray(3, 5, cv.CV_32F, [0.,0.,0.,0.,0.,0.,0.70710677,1.,0.70710677,0.,0.,0.,0.,0.,0.]); |
|
|
|
assert.deepEqual(dst.data, expected.data); |
|
dst.delete(); |
|
expected.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_imgProc', function(assert) { |
|
// calcHist |
|
{ |
|
let vec1 = new cv.Mat.ones(new cv.Size(20, 20), cv.CV_8UC1); // eslint-disable-line new-cap |
|
let source = new cv.MatVector(); |
|
source.push_back(vec1); |
|
let channels = [0]; |
|
let histSize = [256]; |
|
let ranges =[0, 256]; |
|
|
|
let hist = new cv.Mat(); |
|
let mask = new cv.Mat(); |
|
let binSize = cv._malloc(4); |
|
let binView = new Int32Array(cv.HEAP8.buffer, binSize); |
|
binView[0] = 10; |
|
cv.calcHist(source, channels, mask, hist, histSize, ranges, false); |
|
|
|
// hist should contains a N X 1 array. |
|
let size = hist.size(); |
|
assert.equal(size.height, 256); |
|
assert.equal(size.width, 1); |
|
|
|
// default parameters |
|
cv.calcHist(source, channels, mask, hist, histSize, ranges); |
|
size = hist.size(); |
|
assert.equal(size.height, 256); |
|
assert.equal(size.width, 1); |
|
|
|
// Do we need to verify data in histogram? |
|
// let dataView = hist.data; |
|
|
|
// Free resource |
|
cv._free(binSize); |
|
mask.delete(); |
|
hist.delete(); |
|
} |
|
|
|
// cvtColor |
|
{ |
|
let source = new cv.Mat(10, 10, cv.CV_8UC3); |
|
let dest = new cv.Mat(); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY, 0); |
|
assert.equal(dest.channels(), 1); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY); |
|
assert.equal(dest.channels(), 1); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA, 0); |
|
assert.equal(dest.channels(), 4); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA); |
|
assert.equal(dest.channels(), 4); |
|
|
|
dest.delete(); |
|
source.delete(); |
|
} |
|
|
|
// equalizeHist |
|
{ |
|
let source = new cv.Mat(10, 10, cv.CV_8UC1); |
|
let dest = new cv.Mat(); |
|
|
|
cv.equalizeHist(source, dest); |
|
|
|
// eualizeHist changes the content of a image, but does not alter meta data |
|
// of it. |
|
assert.equal(source.channels(), dest.channels()); |
|
assert.equal(source.type(), dest.type()); |
|
|
|
dest.delete(); |
|
source.delete(); |
|
} |
|
|
|
// floodFill |
|
{ |
|
let center = new cv.Point(5, 5); |
|
let rect = new cv.Rect(0, 0, 0, 0); |
|
let img = new cv.Mat.zeros(10, 10, cv.CV_8UC1); |
|
let color = new cv.Scalar (255); |
|
cv.circle(img, center, 3, color, 1); |
|
|
|
let edge = new cv.Mat(); |
|
cv.Canny(img, edge, 100, 255); |
|
cv.copyMakeBorder(edge, edge, 1, 1, 1, 1, cv.BORDER_REPLICATE); |
|
|
|
let expected_img_data = new Uint8Array([ |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 255, 0, 0, 0, 0, |
|
0, 0, 0, 255, 255, 255, 255, 255, 0, 0, |
|
0, 0, 0, 255, 0, 255, 0, 255, 0, 0, |
|
0, 0, 255, 255, 255, 255, 0, 0, 255, 0, |
|
0, 0, 0, 255, 0, 0, 0, 255, 0, 0, |
|
0, 0, 0, 255, 255, 0, 255, 255, 0, 0, |
|
0, 0, 0, 0, 0, 255, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
|
|
|
let img_elem = 10*10*1; |
|
let expected_img_data_ptr = cv._malloc(img_elem); |
|
let expected_img_data_heap = new Uint8Array(cv.HEAPU8.buffer, |
|
expected_img_data_ptr, |
|
img_elem); |
|
expected_img_data_heap.set(new Uint8Array(expected_img_data.buffer)); |
|
|
|
let expected_img = new cv.Mat( 10, 10, cv.CV_8UC1, expected_img_data_ptr, 0); |
|
|
|
let expected_rect = new cv.Rect(3,3,3,3); |
|
|
|
let compare_result = new cv.Mat(10, 10, cv.CV_8UC1); |
|
|
|
cv.floodFill(img, edge, center, color, rect); |
|
|
|
cv.compare (img, expected_img, compare_result, cv.CMP_EQ); |
|
|
|
// expect every pixels are the same. |
|
assert.equal (cv.countNonZero(compare_result), img.total()); |
|
assert.equal (rect.x, expected_rect.x); |
|
assert.equal (rect.y, expected_rect.y); |
|
assert.equal (rect.width, expected_rect.width); |
|
assert.equal (rect.height, expected_rect.height); |
|
|
|
img.delete(); |
|
edge.delete(); |
|
expected_img.delete(); |
|
compare_result.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('Drawing Functions', function(assert) { |
|
// fillPoly |
|
{ |
|
let img_width = 6; |
|
let img_height = 6; |
|
|
|
let img = new cv.Mat.zeros(img_height, img_width, cv.CV_8UC1); |
|
|
|
let npts = 4; |
|
let square_point_data = new Uint8Array([ |
|
1, 1, |
|
4, 1, |
|
4, 4, |
|
1, 4]); |
|
let square_points = cv.matFromArray(npts, 1, cv.CV_32SC2, square_point_data); |
|
let pts = new cv.MatVector(); |
|
pts.push_back (square_points); |
|
let color = new cv.Scalar (255); |
|
|
|
let expected_img_data = new Uint8Array([ |
|
0, 0, 0, 0, 0, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 0, 0, 0, 0, 0]); |
|
let expected_img = cv.matFromArray(img_height, img_width, cv.CV_8UC1, expected_img_data); |
|
|
|
cv.fillPoly(img, pts, color); |
|
|
|
let compare_result = new cv.Mat(img_height, img_width, cv.CV_8UC1); |
|
|
|
cv.compare (img, expected_img, compare_result, cv.CMP_EQ); |
|
|
|
// expect every pixels are the same. |
|
assert.equal (cv.countNonZero(compare_result), img.total()); |
|
|
|
img.delete(); |
|
square_points.delete(); |
|
pts.delete(); |
|
expected_img.delete(); |
|
compare_result.delete(); |
|
} |
|
|
|
// fillConvexPoly |
|
{ |
|
let img_width = 6; |
|
let img_height = 6; |
|
|
|
let img = new cv.Mat.zeros(img_height, img_width, cv.CV_8UC1); |
|
|
|
let npts = 4; |
|
let square_point_data = new Uint8Array([ |
|
1, 1, |
|
4, 1, |
|
4, 4, |
|
1, 4]); |
|
let square_points = cv.matFromArray(npts, 1, cv.CV_32SC2, square_point_data); |
|
let color = new cv.Scalar (255); |
|
|
|
let expected_img_data = new Uint8Array([ |
|
0, 0, 0, 0, 0, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 255, 255, 255, 255, 0, |
|
0, 0, 0, 0, 0, 0]); |
|
let expected_img = cv.matFromArray(img_height, img_width, cv.CV_8UC1, expected_img_data); |
|
|
|
cv.fillConvexPoly(img, square_points, color); |
|
|
|
let compare_result = new cv.Mat(img_height, img_width, cv.CV_8UC1); |
|
|
|
cv.compare (img, expected_img, compare_result, cv.CMP_EQ); |
|
|
|
// expect every pixels are the same. |
|
assert.equal (cv.countNonZero(compare_result), img.total()); |
|
|
|
img.delete(); |
|
square_points.delete(); |
|
expected_img.delete(); |
|
compare_result.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_segmentation', function(assert) { |
|
const THRESHOLD = 127.0; |
|
const THRESHOLD_MAX = 210.0; |
|
|
|
// threshold |
|
{ |
|
let source = new cv.Mat(1, 5, cv.CV_8UC1); |
|
let sourceView = source.data; |
|
sourceView[0] = 0; // < threshold |
|
sourceView[1] = 100; // < threshold |
|
sourceView[2] = 200; // > threshold |
|
|
|
let dest = new cv.Mat(); |
|
|
|
cv.threshold(source, dest, THRESHOLD, THRESHOLD_MAX, cv.THRESH_BINARY); |
|
|
|
let destView = dest.data; |
|
assert.equal(destView[0], 0); |
|
assert.equal(destView[1], 0); |
|
assert.equal(destView[2], THRESHOLD_MAX); |
|
} |
|
|
|
// adaptiveThreshold |
|
{ |
|
let source = cv.Mat.zeros(1, 5, cv.CV_8UC1); |
|
let sourceView = source.data; |
|
sourceView[0] = 50; |
|
sourceView[1] = 150; |
|
sourceView[2] = 200; |
|
|
|
let dest = new cv.Mat(); |
|
const C = 0; |
|
const blockSize = 3; |
|
cv.adaptiveThreshold(source, dest, THRESHOLD_MAX, |
|
cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, blockSize, C); |
|
|
|
let destView = dest.data; |
|
assert.equal(destView[0], 0); |
|
assert.equal(destView[1], THRESHOLD_MAX); |
|
assert.equal(destView[2], THRESHOLD_MAX); |
|
} |
|
}); |
|
|
|
QUnit.test('test_shape', function(assert) { |
|
// moments |
|
{ |
|
let points = new cv.Mat(1, 4, cv.CV_32SC2); |
|
let data32S = points.data32S; |
|
data32S[0]=50; |
|
data32S[1]=56; |
|
data32S[2]=53; |
|
data32S[3]=53; |
|
data32S[4]=46; |
|
data32S[5]=54; |
|
data32S[6]=49; |
|
data32S[7]=51; |
|
|
|
let m = cv.moments(points, false); |
|
let area = cv.contourArea(points, false); |
|
|
|
assert.equal(m.m00, 0); |
|
assert.equal(m.m01, 0); |
|
assert.equal(m.m10, 0); |
|
assert.equal(area, 0); |
|
|
|
// default parameters |
|
m = cv.moments(points); |
|
area = cv.contourArea(points); |
|
assert.equal(m.m00, 0); |
|
assert.equal(m.m01, 0); |
|
assert.equal(m.m10, 0); |
|
assert.equal(area, 0); |
|
|
|
points.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_min_enclosing', function(assert) { |
|
// minEnclosingCircle |
|
{ |
|
let points = new cv.Mat(4, 1, cv.CV_32FC2); |
|
|
|
points.data32F[0] = 0; |
|
points.data32F[1] = 0; |
|
points.data32F[2] = 1; |
|
points.data32F[3] = 0; |
|
points.data32F[4] = 1; |
|
points.data32F[5] = 1; |
|
points.data32F[6] = 0; |
|
points.data32F[7] = 1; |
|
|
|
let circle = cv.minEnclosingCircle(points); |
|
|
|
assert.deepEqual(circle.center, {x: 0.5, y: 0.5}); |
|
assert.ok(Math.abs(circle.radius - Math.sqrt(2) / 2) < 0.001); |
|
|
|
points.delete(); |
|
} |
|
|
|
// minEnclosingTriangle |
|
{ |
|
let dst = cv.Mat.zeros(80, 80, cv.CV_8U); |
|
let contours = new cv.MatVector(); |
|
let hierarchy = new cv.Mat(); |
|
let triangle = new cv.Mat(); |
|
|
|
cv.drawMarker(dst, new cv.Point(40, 40), new cv.Scalar(255)); |
|
cv.findContoursLinkRuns(dst,contours,hierarchy); |
|
cv.minEnclosingTriangle(contours.get(0),triangle); |
|
|
|
// Verify result. |
|
const triangleData = triangle.data32F; |
|
assert.deepEqual(triangleData[0], triangleData[4]); |
|
assert.deepEqual(triangleData[1], 20); |
|
assert.deepEqual(triangleData[2], 30); |
|
assert.deepEqual(triangleData[3], 40); |
|
assert.deepEqual(triangleData[5], 60); |
|
|
|
dst.delete(); |
|
contours.delete(); |
|
hierarchy.delete(); |
|
triangle.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_filter', function(assert) { |
|
// blur |
|
{ |
|
let mat1 = cv.Mat.ones(5, 5, cv.CV_8UC3); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.blur(mat1, mat2, {height: 3, width: 3}, {x: -1, y: -1}, cv.BORDER_DEFAULT); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 5); |
|
assert.equal(size.width, 5); |
|
|
|
cv.blur(mat1, mat2, {height: 3, width: 3}, {x: -1, y: -1}); |
|
|
|
// Verify result. |
|
size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 5); |
|
assert.equal(size.width, 5); |
|
|
|
cv.blur(mat1, mat2, {height: 3, width: 3}); |
|
|
|
// Verify result. |
|
size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 5); |
|
assert.equal(size.width, 5); |
|
|
|
mat1.delete(); |
|
mat2.delete(); |
|
} |
|
|
|
// GaussianBlur |
|
{ |
|
let mat1 = cv.Mat.ones(7, 7, cv.CV_8UC1); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.GaussianBlur(mat1, mat2, new cv.Size(3, 3), 0, 0, // eslint-disable-line new-cap |
|
cv.BORDER_DEFAULT); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 1); |
|
assert.equal(size.height, 7); |
|
assert.equal(size.width, 7); |
|
mat1.delete(); |
|
mat2.delete(); |
|
} |
|
|
|
// spatialGradient |
|
{ |
|
let src = cv.matFromArray(4, 4, cv.CV_8U, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]); |
|
let dx = new cv.Mat(); |
|
let dy = new cv.Mat(); |
|
cv.spatialGradient(src, dx, dy); |
|
|
|
// Verify result. |
|
let expected_dx = new cv.Mat(); |
|
let expected_dy = new cv.Mat(); |
|
cv.Sobel(src, expected_dx, cv.CV_16SC1, 1, 0, 3); |
|
cv.Sobel(src, expected_dy, cv.CV_16SC1, 0, 1, 3); |
|
|
|
assert.deepEqual(dx.data, expected_dx.data); |
|
assert.deepEqual(dy.data, expected_dy.data); |
|
|
|
src.delete(); |
|
dx.delete(); |
|
dy.delete(); |
|
expected_dx.delete(); |
|
expected_dy.delete(); |
|
} |
|
|
|
// sqrBoxFilter |
|
{ |
|
let src = cv.matFromArray(2, 3, cv.CV_8U, [1,2,1,1,2,1]); |
|
let dst = new cv.Mat(); |
|
cv.sqrBoxFilter(src, dst, cv.CV_32F, new cv.Size(3, 3)); |
|
|
|
// Verify result. |
|
let expected = cv.matFromArray(2, 3, cv.CV_32F,[3.0,2.0,3.0,3.0,2.0,3.0]); |
|
|
|
assert.deepEqual(dst.data, expected.data); |
|
src.delete(); |
|
dst.delete(); |
|
expected.delete(); |
|
} |
|
|
|
// stackBlur |
|
{ |
|
let src = cv.matFromArray(2, 3, cv.CV_8U, [10,25,30,45,50,60]); |
|
cv.stackBlur(src, src, new cv.Size(3, 3)); |
|
|
|
// Verify result. |
|
let expected = new Uint8Array([22,29,36,38,43,50]); |
|
|
|
assert.deepEqual(src.data, expected); |
|
src.delete(); |
|
} |
|
|
|
// medianBlur |
|
{ |
|
let mat1 = cv.Mat.ones(9, 9, cv.CV_8UC3); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.medianBlur(mat1, mat2, 3); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
|
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 9); |
|
assert.equal(size.width, 9); |
|
mat1.delete(); |
|
mat2.delete(); |
|
} |
|
|
|
// bilateralFilter |
|
{ |
|
let mat1 = cv.Mat.ones(11, 11, cv.CV_8UC3); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.bilateralFilter(mat1, mat2, 3, 6, 1.5, cv.BORDER_DEFAULT); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
|
|
// default parameters |
|
cv.bilateralFilter(mat1, mat2, 3, 6, 1.5); |
|
// Verify result. |
|
size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
|
|
mat1.delete(); |
|
mat2.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_watershed', function(assert) { |
|
{ |
|
let mat = cv.Mat.ones(11, 11, cv.CV_8UC3); |
|
let out = new cv.Mat(11, 11, cv.CV_32SC1); |
|
|
|
cv.watershed(mat, out); |
|
|
|
// Verify result. |
|
let size = out.size(); |
|
assert.equal(out.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(out.elemSize1(), 4); |
|
|
|
mat.delete(); |
|
out.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_distanceTransform', function(assert) { |
|
{ |
|
let mat = cv.Mat.ones(11, 11, cv.CV_8UC1); |
|
let out = new cv.Mat(11, 11, cv.CV_32FC1); |
|
let labels = new cv.Mat(11, 11, cv.CV_32FC1); |
|
const maskSize = 3; |
|
cv.distanceTransform(mat, out, cv.DIST_L2, maskSize, cv.CV_32F); |
|
|
|
// Verify result. |
|
let size = out.size(); |
|
assert.equal(out.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(out.elemSize1(), 4); |
|
|
|
cv.distanceTransformWithLabels(mat, out, labels, cv.DIST_L2, maskSize, |
|
cv.DIST_LABEL_CCOMP); |
|
|
|
// Verify result. |
|
size = out.size(); |
|
assert.equal(out.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(out.elemSize1(), 4); |
|
|
|
size = labels.size(); |
|
assert.equal(labels.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(labels.elemSize1(), 4); |
|
|
|
mat.delete(); |
|
out.delete(); |
|
labels.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_integral', function(assert) { |
|
{ |
|
let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3); |
|
let sum = new cv.Mat(); |
|
let sqSum = new cv.Mat(); |
|
let title = new cv.Mat(); |
|
|
|
cv.integral(mat, sum, -1); |
|
|
|
// Verify result. |
|
let size = sum.size(); |
|
assert.equal(sum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
cv.integral2(mat, sum, sqSum, -1, -1); |
|
// Verify result. |
|
size = sum.size(); |
|
assert.equal(sum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
size = sqSum.size(); |
|
assert.equal(sqSum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
mat.delete(); |
|
sum.delete(); |
|
sqSum.delete(); |
|
title.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_rotatedRectangleIntersection', function(assert) { |
|
{ |
|
let dst = cv.Mat.zeros(80, 80, cv.CV_8U); |
|
let contours = new cv.MatVector(); |
|
let hierarchy = new cv.Mat(); |
|
let intersectionPoints = new cv.Mat(); |
|
|
|
cv.drawMarker(dst, new cv.Point(40, 40), new cv.Scalar(255)); |
|
cv.findContoursLinkRuns(dst,contours,hierarchy); |
|
let rr1 = cv.minAreaRect(contours.get(0)); |
|
let rr2 = cv.minAreaRect(contours.get(0)); |
|
let rr3 = new cv.RotatedRect({x: 40, y: 40}, {height: 10, width: 20}, 45); |
|
|
|
let intersectionType = cv.rotatedRectangleIntersection(rr1, rr2, intersectionPoints); |
|
|
|
// Verify result. |
|
assert.deepEqual(intersectionType, cv.INTERSECT_FULL); |
|
intersectionPoints.convertTo(intersectionPoints, cv.CV_32S); |
|
let intersectionPointsData = intersectionPoints.data32S; |
|
assert.deepEqual(intersectionPointsData[0], 30); |
|
assert.deepEqual(intersectionPointsData[1], 40); |
|
assert.deepEqual(intersectionPointsData[2], 40); |
|
assert.deepEqual(intersectionPointsData[3], 30); |
|
assert.deepEqual(intersectionPointsData[4], 50); |
|
assert.deepEqual(intersectionPointsData[5], 40); |
|
assert.deepEqual(intersectionPointsData[6], 40); |
|
assert.deepEqual(intersectionPointsData[7], 50); |
|
|
|
intersectionType = cv.rotatedRectangleIntersection(rr1, rr3, intersectionPoints); |
|
|
|
// Verify result. |
|
assert.deepEqual(intersectionType, cv.INTERSECT_PARTIAL); |
|
intersectionPoints.convertTo(intersectionPoints, cv.CV_32S); |
|
intersectionPointsData = intersectionPoints.data32S; |
|
assert.deepEqual(intersectionPointsData[0], 39); |
|
assert.deepEqual(intersectionPointsData[1], 31); |
|
assert.deepEqual(intersectionPointsData[2], 49); |
|
assert.deepEqual(intersectionPointsData[3], 41); |
|
assert.deepEqual(intersectionPointsData[4], 41); |
|
assert.deepEqual(intersectionPointsData[5], 49); |
|
assert.deepEqual(intersectionPointsData[6], 31); |
|
assert.deepEqual(intersectionPointsData[7], 39); |
|
|
|
dst.delete(); |
|
contours.delete(); |
|
hierarchy.delete(); |
|
intersectionPoints.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('warpPolar', function(assert) { |
|
const lines = new cv.Mat(255, 255, cv.CV_8U, new cv.Scalar(0)); |
|
for (let r = 0; r < lines.rows; r++) { |
|
lines.row(r).setTo(new cv.Scalar(r)); |
|
} |
|
cv.warpPolar(lines, lines, { width: 5, height: 5 }, new cv.Point(2, 2), 3, |
|
cv.INTER_CUBIC | cv.WARP_FILL_OUTLIERS | cv.WARP_INVERSE_MAP); |
|
assert.ok(lines instanceof cv.Mat); |
|
assert.deepEqual(Array.from(lines.data), [ |
|
159, 172, 191, 210, 223, |
|
146, 159, 191, 223, 236, |
|
128, 128, 0, 0, 0, |
|
109, 96, 64, 32, 19, |
|
96, 83, 64, 45, 32 |
|
]); |
|
}); |
|
|
|
QUnit.test('IntelligentScissorsMB', function(assert) { |
|
const lines = new cv.Mat(50, 100, cv.CV_8U, new cv.Scalar(0)); |
|
lines.row(10).setTo(new cv.Scalar(255)); |
|
assert.ok(lines instanceof cv.Mat); |
|
|
|
let tool = new cv.segmentation_IntelligentScissorsMB(); |
|
tool.applyImage(lines); |
|
assert.ok(lines instanceof cv.Mat); |
|
lines.delete(); |
|
|
|
tool.buildMap(new cv.Point(10, 10)); |
|
|
|
let contour = new cv.Mat(); |
|
tool.getContour(new cv.Point(50, 10), contour); |
|
assert.equal(contour.type(), cv.CV_32SC2); |
|
assert.ok(contour.total() == 41, contour.total()); |
|
|
|
tool.getContour(new cv.Point(80, 10), contour); |
|
assert.equal(contour.type(), cv.CV_32SC2); |
|
assert.ok(contour.total() == 71, contour.total()); |
|
});
|
|
|