mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
871 lines
26 KiB
871 lines
26 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/core/ocl.hpp> |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/dnn/all_layers.hpp> |
|
#include <opencv2/ts/ocl_test.hpp> |
|
|
|
namespace opencv_test { namespace { |
|
|
|
template<typename TString> |
|
static String _tf(TString filename) |
|
{ |
|
String basetestdir = getOpenCVExtraDir(); |
|
size_t len = basetestdir.size(); |
|
if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\') |
|
return (basetestdir + "/dnn/layers") + filename; |
|
return (basetestdir + "dnn/layers/") + filename; |
|
} |
|
|
|
void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs) |
|
{ |
|
size_t ninputs = inpBlobs.size(); |
|
std::vector<Mat> inp_(ninputs); |
|
std::vector<Mat*> inp(ninputs); |
|
std::vector<Mat> outp, intp; |
|
std::vector<MatShape> inputs, outputs, internals; |
|
|
|
for (size_t i = 0; i < ninputs; i++) |
|
{ |
|
inp_[i] = inpBlobs[i].clone(); |
|
inp[i] = &inp_[i]; |
|
inputs.push_back(shape(inp_[i])); |
|
} |
|
|
|
layer->getMemoryShapes(inputs, 0, outputs, internals); |
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
outp.push_back(Mat(outputs[i], CV_32F)); |
|
} |
|
for (size_t i = 0; i < internals.size(); i++) |
|
{ |
|
intp.push_back(Mat(internals[i], CV_32F)); |
|
} |
|
|
|
layer->finalize(inp, outp); |
|
layer->forward(inp, outp, intp); |
|
|
|
size_t noutputs = outp.size(); |
|
outBlobs.resize(noutputs); |
|
for (size_t i = 0; i < noutputs; i++) |
|
outBlobs[i] = outp[i]; |
|
} |
|
|
|
|
|
void testLayerUsingCaffeModels(String basename, int targetId = DNN_TARGET_CPU, |
|
bool useCaffeModel = false, bool useCommonInputBlob = true) |
|
{ |
|
String prototxt = _tf(basename + ".prototxt"); |
|
String caffemodel = _tf(basename + ".caffemodel"); |
|
|
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); |
|
String outfile = _tf(basename + ".npy"); |
|
|
|
Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String()); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(targetId); |
|
|
|
Mat inp = blobFromNPY(inpfile); |
|
Mat ref = blobFromNPY(outfile); |
|
|
|
net.setInput(inp, "input"); |
|
Mat out = net.forward("output"); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
TEST(Layer_Test_Softmax, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_softmax"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_Softmax, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_softmax", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_LRN_spatial, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_lrn_spatial"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_LRN_spatial, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_lrn_spatial", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_LRN_channels, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_lrn_channels"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_LRN_channels, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_lrn_channels", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_Convolution, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_convolution", DNN_TARGET_CPU, true); |
|
} |
|
|
|
OCL_TEST(Layer_Test_Convolution, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_convolution", DNN_TARGET_OPENCL, true); |
|
} |
|
|
|
TEST(Layer_Test_DeConvolution, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_deconvolution", DNN_TARGET_CPU, true, false); |
|
} |
|
|
|
OCL_TEST(Layer_Test_DeConvolution, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_deconvolution", DNN_TARGET_OPENCL, true, false); |
|
} |
|
|
|
TEST(Layer_Test_InnerProduct, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_inner_product", DNN_TARGET_CPU, true); |
|
} |
|
|
|
OCL_TEST(Layer_Test_InnerProduct, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_inner_product", DNN_TARGET_OPENCL, true); |
|
} |
|
|
|
TEST(Layer_Test_Pooling_max, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_pooling_max"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_Pooling_max, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_pooling_max", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_Pooling_ave, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_pooling_ave"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_Pooling_ave, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_pooling_ave", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_MVN, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_mvn"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_MVN, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_mvn", DNN_TARGET_OPENCL); |
|
} |
|
|
|
void testReshape(const MatShape& inputShape, const MatShape& targetShape, |
|
int axis = 0, int num_axes = -1, |
|
MatShape mask = MatShape()) |
|
{ |
|
LayerParams params; |
|
params.set("axis", axis); |
|
params.set("num_axes", num_axes); |
|
if (!mask.empty()) |
|
{ |
|
params.set("dim", DictValue::arrayInt<int*>(&mask[0], mask.size())); |
|
} |
|
|
|
Mat inp(inputShape.size(), &inputShape[0], CV_32F); |
|
std::vector<Mat> inpVec(1, inp); |
|
std::vector<Mat> outVec, intVec; |
|
|
|
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params); |
|
runLayer(rl, inpVec, outVec); |
|
|
|
Mat& out = outVec[0]; |
|
MatShape shape(out.size.p, out.size.p + out.dims); |
|
EXPECT_EQ(shape, targetShape); |
|
} |
|
|
|
TEST(Layer_Test_Reshape, Accuracy) |
|
{ |
|
{ |
|
int inp[] = {4, 3, 1, 2}; |
|
int out[] = {4, 3, 2}; |
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1); |
|
} |
|
{ |
|
int inp[] = {1, 128, 4, 4}; |
|
int out[] = {1, 2048}; |
|
int mask[] = {-1, 2048}; |
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1, |
|
MatShape(mask, mask + 2)); |
|
} |
|
} |
|
|
|
TEST(Layer_Test_BatchNorm, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_batch_norm", DNN_TARGET_CPU, true); |
|
} |
|
|
|
TEST(Layer_Test_BatchNorm, local_stats) |
|
{ |
|
testLayerUsingCaffeModels("layer_batch_norm_local_stats", DNN_TARGET_CPU, true, false); |
|
} |
|
|
|
TEST(Layer_Test_ReLU, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_relu"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_ReLU, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_relu", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_Dropout, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_dropout"); |
|
} |
|
|
|
TEST(Layer_Test_Concat, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_concat"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_Concat, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_concat", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_Fused_Concat, Accuracy) |
|
{ |
|
// Test case |
|
// input |
|
// | |
|
// v |
|
// some_layer |
|
// | | |
|
// v v |
|
// concat |
|
Net net; |
|
int interLayer; |
|
{ |
|
LayerParams lp; |
|
lp.type = "AbsVal"; |
|
lp.name = "someLayer"; |
|
interLayer = net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
{ |
|
LayerParams lp; |
|
lp.set("axis", 1); |
|
lp.type = "Concat"; |
|
lp.name = "testConcat"; |
|
int id = net.addLayer(lp.name, lp.type, lp); |
|
net.connect(interLayer, 0, id, 0); |
|
net.connect(interLayer, 0, id, 1); |
|
} |
|
int shape[] = {1, 2, 3, 4}; |
|
Mat input(4, shape, CV_32F); |
|
randu(input, 0.0f, 1.0f); // [0, 1] to make AbsVal an identity transformation. |
|
|
|
net.setInput(input); |
|
Mat out = net.forward(); |
|
|
|
normAssert(slice(out, Range::all(), Range(0, 2), Range::all(), Range::all()), input); |
|
normAssert(slice(out, Range::all(), Range(2, 4), Range::all(), Range::all()), input); |
|
|
|
// |
|
|
|
testLayerUsingCaffeModels("layer_concat_optim", DNN_TARGET_CPU, true, false); |
|
testLayerUsingCaffeModels("layer_concat_shared_input", DNN_TARGET_CPU, true, false); |
|
} |
|
|
|
TEST(Layer_Test_Eltwise, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_eltwise"); |
|
} |
|
|
|
OCL_TEST(Layer_Test_Eltwise, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_eltwise", DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Test_PReLU, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_prelu", DNN_TARGET_CPU, true); |
|
testLayerUsingCaffeModels("layer_prelu_fc", DNN_TARGET_CPU, true, false); |
|
} |
|
|
|
OCL_TEST(Layer_Test_PReLU, Accuracy) |
|
{ |
|
testLayerUsingCaffeModels("layer_prelu", DNN_TARGET_OPENCL, true); |
|
testLayerUsingCaffeModels("layer_prelu_fc", DNN_TARGET_OPENCL, true, false); |
|
} |
|
|
|
//template<typename XMat> |
|
//static void test_Layer_Concat() |
|
//{ |
|
// Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f); |
|
// std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) }; |
|
// Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f))); |
|
// |
|
// runLayer(ConcatLayer::create(1), src, res); |
|
// normAssert(ref, res[0]); |
|
//} |
|
//TEST(Layer_Concat, Accuracy) |
|
//{ |
|
// test_Layer_Concat<Mat>()); |
|
//} |
|
//OCL_TEST(Layer_Concat, Accuracy) |
|
//{ |
|
// OCL_ON(test_Layer_Concat<Mat>()); |
|
// ); |
|
//} |
|
|
|
static void test_Reshape_Split_Slice_layers(int targetId) |
|
{ |
|
Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt")); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(targetId); |
|
|
|
Mat input(6, 12, CV_32F); |
|
RNG rng(0); |
|
rng.fill(input, RNG::UNIFORM, -1, 1); |
|
|
|
net.setInput(input, "input"); |
|
Mat output = net.forward("output"); |
|
|
|
normAssert(input, output); |
|
} |
|
|
|
TEST(Layer_Test_Reshape_Split_Slice, Accuracy) |
|
{ |
|
test_Reshape_Split_Slice_layers(DNN_TARGET_CPU); |
|
} |
|
|
|
OCL_TEST(Layer_Test_Reshape_Split_Slice, Accuracy) |
|
{ |
|
test_Reshape_Split_Slice_layers(DNN_TARGET_OPENCL); |
|
} |
|
|
|
TEST(Layer_Conv_Elu, Accuracy) |
|
{ |
|
Net net = readNetFromTensorflow(_tf("layer_elu_model.pb")); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
Mat inp = blobFromNPY(_tf("layer_elu_in.npy")); |
|
Mat ref = blobFromNPY(_tf("layer_elu_out.npy")); |
|
|
|
net.setInput(inp, "input"); |
|
Mat out = net.forward(); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
class Layer_LSTM_Test : public ::testing::Test |
|
{ |
|
public: |
|
int numInp, numOut; |
|
Mat Wh, Wx, b; |
|
Ptr<LSTMLayer> layer; |
|
std::vector<Mat> inputs, outputs; |
|
|
|
Layer_LSTM_Test() {} |
|
|
|
void init(const MatShape &inpShape_, const MatShape &outShape_, |
|
bool produceCellOutput, bool useTimestampDim) |
|
{ |
|
numInp = total(inpShape_); |
|
numOut = total(outShape_); |
|
|
|
Wh = Mat::ones(4 * numOut, numOut, CV_32F); |
|
Wx = Mat::ones(4 * numOut, numInp, CV_32F); |
|
b = Mat::ones(4 * numOut, 1, CV_32F); |
|
|
|
LayerParams lp; |
|
lp.blobs.resize(3); |
|
lp.blobs[0] = Wh; |
|
lp.blobs[1] = Wx; |
|
lp.blobs[2] = b; |
|
lp.set<bool>("produce_cell_output", produceCellOutput); |
|
lp.set<bool>("use_timestamp_dim", useTimestampDim); |
|
|
|
layer = LSTMLayer::create(lp); |
|
layer->setOutShape(outShape_); |
|
} |
|
}; |
|
|
|
TEST_F(Layer_LSTM_Test, get_set_test) |
|
{ |
|
const int TN = 4; |
|
MatShape inpShape = shape(5, 3, 2); |
|
MatShape outShape = shape(3, 1, 2); |
|
MatShape inpResShape = concat(shape(TN), inpShape); |
|
MatShape outResShape = concat(shape(TN), outShape); |
|
|
|
init(inpShape, outShape, true, false); |
|
layer->setOutShape(outShape); |
|
|
|
Mat C((int)outResShape.size(), &outResShape[0], CV_32F); |
|
randu(C, -1., 1.); |
|
Mat H = C.clone(); |
|
randu(H, -1., 1.); |
|
|
|
Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F); |
|
randu(inp, -1., 1.); |
|
|
|
inputs.push_back(inp); |
|
runLayer(layer, inputs, outputs); |
|
|
|
EXPECT_EQ(2u, outputs.size()); |
|
|
|
print(outResShape, "outResShape"); |
|
print(shape(outputs[0]), "out0"); |
|
print(shape(outputs[0]), "out1"); |
|
|
|
EXPECT_EQ(outResShape, shape(outputs[0])); |
|
EXPECT_EQ(outResShape, shape(outputs[1])); |
|
|
|
EXPECT_EQ(0, layer->inputNameToIndex("x")); |
|
EXPECT_EQ(0, layer->outputNameToIndex("h")); |
|
EXPECT_EQ(1, layer->outputNameToIndex("c")); |
|
} |
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent) |
|
{ |
|
LayerParams lp; |
|
lp.blobs.resize(3); |
|
lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh |
|
lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx |
|
lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias |
|
Ptr<LSTMLayer> layer = LSTMLayer::create(lp); |
|
|
|
Mat inp = blobFromNPY(_tf("recurrent.input.npy")); |
|
std::vector<Mat> inputs(1, inp), outputs; |
|
runLayer(layer, inputs, outputs); |
|
|
|
Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy")); |
|
normAssert(h_t_reference, outputs[0]); |
|
} |
|
|
|
TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent) |
|
{ |
|
Ptr<RNNLayer> layer = RNNLayer::create(LayerParams()); |
|
|
|
layer->setWeights( |
|
blobFromNPY(_tf("rnn.prototxt.w_0.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_1.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_2.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_3.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_4.npy")) ); |
|
|
|
std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy"))); |
|
runLayer(layer, input, output); |
|
|
|
Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy")); |
|
normAssert(h_ref, output[0]); |
|
} |
|
|
|
|
|
class Layer_RNN_Test : public ::testing::Test |
|
{ |
|
public: |
|
int nX, nH, nO, nT, nS; |
|
Mat Whh, Wxh, bh, Who, bo; |
|
Ptr<RNNLayer> layer; |
|
|
|
std::vector<Mat> inputs, outputs; |
|
|
|
Layer_RNN_Test() |
|
{ |
|
nT = 3; |
|
nS = 5; |
|
nX = 31; |
|
nH = 64; |
|
nO = 100; |
|
|
|
Whh = Mat::ones(nH, nH, CV_32F); |
|
Wxh = Mat::ones(nH, nX, CV_32F); |
|
bh = Mat::ones(nH, 1, CV_32F); |
|
Who = Mat::ones(nO, nH, CV_32F); |
|
bo = Mat::ones(nO, 1, CV_32F); |
|
|
|
layer = RNNLayer::create(LayerParams()); |
|
layer->setProduceHiddenOutput(true); |
|
layer->setWeights(Wxh, bh, Whh, Who, bo); |
|
} |
|
}; |
|
|
|
TEST_F(Layer_RNN_Test, get_set_test) |
|
{ |
|
int sz[] = { nT, nS, 1, nX }; |
|
Mat inp(4, sz, CV_32F); |
|
randu(inp, -1., 1.); |
|
inputs.push_back(inp); |
|
runLayer(layer, inputs, outputs); |
|
|
|
EXPECT_EQ(outputs.size(), 2u); |
|
EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO)); |
|
EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH)); |
|
} |
|
|
|
void testLayerUsingDarknetModels(String basename, bool useDarknetModel = false, bool useCommonInputBlob = true) |
|
{ |
|
String cfg = _tf(basename + ".cfg"); |
|
String weights = _tf(basename + ".weights"); |
|
|
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); |
|
String outfile = _tf(basename + ".npy"); |
|
|
|
Net net = readNetFromDarknet(cfg, (useDarknetModel) ? weights : String()); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
Mat inp = blobFromNPY(inpfile); |
|
Mat ref = blobFromNPY(outfile); |
|
|
|
net.setInput(inp, "data"); |
|
Mat out = net.forward(); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
TEST(Layer_Test_Region, Accuracy) |
|
{ |
|
testLayerUsingDarknetModels("region", false, false); |
|
} |
|
|
|
TEST(Layer_Test_Reorg, Accuracy) |
|
{ |
|
testLayerUsingDarknetModels("reorg", false, false); |
|
} |
|
|
|
TEST(Layer_Test_ROIPooling, Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(_tf("net_roi_pooling.prototxt")); |
|
|
|
Mat inp = blobFromNPY(_tf("net_roi_pooling.input.npy")); |
|
Mat rois = blobFromNPY(_tf("net_roi_pooling.rois.npy")); |
|
Mat ref = blobFromNPY(_tf("net_roi_pooling.npy")); |
|
|
|
net.setInput(inp, "input"); |
|
net.setInput(rois, "rois"); |
|
|
|
Mat out = net.forward(); |
|
|
|
normAssert(out, ref); |
|
} |
|
|
|
typedef testing::TestWithParam<DNNTarget> Test_Caffe_layers; |
|
TEST_P(Test_Caffe_layers, FasterRCNN_Proposal) |
|
{ |
|
Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt")); |
|
net.setPreferableTarget(GetParam()); |
|
|
|
Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy")); |
|
Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy")); |
|
Mat imInfo = (Mat_<float>(1, 3) << 600, 800, 1.6f); |
|
|
|
net.setInput(scores, "rpn_cls_prob_reshape"); |
|
net.setInput(deltas, "rpn_bbox_pred"); |
|
net.setInput(imInfo, "im_info"); |
|
|
|
std::vector<Mat> outs; |
|
net.forward(outs, "output"); |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
Mat ref = blobFromNPY(_tf(i == 0 ? "net_faster_rcnn_proposal.out_rois.npy" : |
|
"net_faster_rcnn_proposal.out_scores.npy")); |
|
const int numDets = ref.size[0]; |
|
EXPECT_LE(numDets, outs[i].size[0]); |
|
normAssert(outs[i].rowRange(0, numDets), ref); |
|
|
|
if (numDets < outs[i].size[0]) |
|
EXPECT_EQ(countNonZero(outs[i].rowRange(numDets, outs[i].size[0])), 0); |
|
} |
|
} |
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_layers, availableDnnTargets()); |
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, Vec2i, bool> > Scale_untrainable; |
|
TEST_P(Scale_untrainable, Accuracy) |
|
{ |
|
Vec4i inpShapeVec = get<0>(GetParam()); |
|
int axis = get<1>(GetParam())[0]; |
|
int weightsDims = get<1>(GetParam())[1]; |
|
bool testFusion = get<2>(GetParam()); |
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; |
|
|
|
// Create a network with two inputs. Scale layer multiplies a first input to |
|
// a second one. See http://caffe.berkeleyvision.org/tutorial/layers/scale.html |
|
Net net; |
|
// Check that this version of Scale layer won't be fused with Convolution layer. |
|
if (testFusion) |
|
{ |
|
LayerParams lp; |
|
lp.set("kernel_size", 1); |
|
lp.set("num_output", 3); |
|
lp.set("group", 3); |
|
lp.set("bias_term", false); |
|
lp.type = "Convolution"; |
|
lp.name = "testConv"; |
|
|
|
std::vector<int> weightsShape(4); |
|
weightsShape[0] = 3; // #outChannels |
|
weightsShape[1] = 1; // #inpChannels / group |
|
weightsShape[2] = 1; // height |
|
weightsShape[3] = 1; // width |
|
Mat weights(weightsShape, CV_32F); |
|
weights.setTo(1); |
|
lp.blobs.push_back(weights); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
LayerParams lp; |
|
lp.type = "Scale"; |
|
lp.name = "testLayer"; |
|
lp.set("axis", axis); |
|
int id = net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.connect(0, 1, id, 1); |
|
|
|
Mat input(4, inpShape, CV_32F); |
|
Mat weights(weightsDims, &inpShape[axis], CV_32F); |
|
randu(input, -1, 1); |
|
randu(weights, -1, 1); |
|
|
|
std::vector<String> inpNames(2); |
|
inpNames[0] = "scale_input"; |
|
inpNames[1] = "scale_weights"; |
|
net.setInputsNames(inpNames); |
|
net.setInput(input, inpNames[0]); |
|
net.setInput(weights, inpNames[1]); |
|
Mat out = net.forward(); |
|
|
|
Mat ref(input.dims, input.size, CV_32F); |
|
float* inpData = (float*)input.data; |
|
float* refData = (float*)ref.data; |
|
float* weightsData = (float*)weights.data; |
|
int spatialSize = 1; |
|
for (int i = axis + weightsDims; i < 4; ++i) |
|
spatialSize *= inpShape[i]; |
|
for (int i = 0; i < ref.total(); ++i) |
|
{ |
|
float w = weightsData[(i / spatialSize) % weights.total()]; |
|
refData[i] = inpData[i] * w; |
|
} |
|
normAssert(out, ref); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test, Scale_untrainable, Combine( |
|
/*input size*/ Values(Vec4i(2, 3, 4, 5)), |
|
/*axis, #dims*/ Values(Vec2i(0, 1), Vec2i(0, 2), Vec2i(0, 3), Vec2i(0, 4), |
|
Vec2i(1, 1), Vec2i(1, 2), Vec2i(1, 3), |
|
Vec2i(2, 1), Vec2i(2, 2), |
|
Vec2i(3, 1)), |
|
/*conv fusion*/ testing::Bool() |
|
)); |
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, Vec4i, int, int, int> > Crop; |
|
TEST_P(Crop, Accuracy) |
|
{ |
|
Vec4i inpShapeVec = get<0>(GetParam()); |
|
Vec4i sizShapeVec = get<1>(GetParam()); |
|
int axis = get<2>(GetParam()); |
|
int numOffsets = get<3>(GetParam()); |
|
int offsetVal = get<4>(GetParam()); |
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; |
|
const int sizShape[] = {sizShapeVec[0], sizShapeVec[1], sizShapeVec[2], sizShapeVec[3]}; |
|
|
|
// Create a network with two inputs. Crop layer crops a first input to |
|
// the size of a second one. |
|
// See http://caffe.berkeleyvision.org/tutorial/layers/crop.html |
|
Net net; |
|
|
|
LayerParams lp; |
|
lp.name = "testCrop"; |
|
lp.type = "Crop"; |
|
lp.set("axis", axis); |
|
if (numOffsets > 0) |
|
{ |
|
std::vector<int> offsets(numOffsets, offsetVal); |
|
lp.set("offset", DictValue::arrayInt<int*>(&offsets[0], offsets.size())); |
|
} |
|
else |
|
offsetVal = 0; |
|
int id = net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.connect(0, 1, id, 1); |
|
|
|
Mat inpImage(4, inpShape, CV_32F); |
|
Mat sizImage(4, sizShape, CV_32F); |
|
randu(inpImage, -1, 1); |
|
randu(sizImage, -1, 1); |
|
|
|
std::vector<String> inpNames(2); |
|
inpNames[0] = "cropImage"; |
|
inpNames[1] = "sizImage"; |
|
net.setInputsNames(inpNames); |
|
net.setInput(inpImage, inpNames[0]); |
|
net.setInput(sizImage, inpNames[1]); |
|
|
|
// There are a few conditions that represent invalid input to the crop |
|
// layer, so in those cases we want to verify an exception is thrown. |
|
|
|
bool shouldThrowException = false; |
|
if (numOffsets > 1 && numOffsets != 4 - axis) |
|
shouldThrowException = true; |
|
else |
|
for (int i = axis; i < 4; i++) |
|
if (sizShape[i] + offsetVal > inpShape[i]) |
|
shouldThrowException = true; |
|
|
|
Mat out; |
|
if (shouldThrowException) |
|
{ |
|
ASSERT_ANY_THROW(out = net.forward()); |
|
return; |
|
} |
|
else |
|
out = net.forward(); |
|
|
|
// Finally, compare the cropped output blob from the DNN layer (out) |
|
// to a reference blob (ref) that we compute here. |
|
|
|
std::vector<Range> crop_range; |
|
crop_range.resize(4, Range::all()); |
|
for (int i = axis; i < 4; i++) |
|
crop_range[i] = Range(offsetVal, sizShape[i] + offsetVal); |
|
|
|
Mat ref(sizImage.dims, sizImage.size, CV_32F); |
|
inpImage(&crop_range[0]).copyTo(ref); |
|
normAssert(out, ref); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test, Crop, Combine( |
|
/*input blob shape*/ Values(Vec4i(1, 3, 20, 30)), |
|
/*cropsize blob shape*/ Values(Vec4i(1, 3, 10, 12)), |
|
/*start axis*/ Values(0, 1, 2), |
|
/*number of offsets*/ Values(0, 1, 2, 4), |
|
/*offset value*/ Values(3, 4) |
|
)); |
|
|
|
// Check that by default average pooling layer should not count zero padded values |
|
// into the normalization area. |
|
TEST(Layer_Test_Average_pooling_kernel_area, Accuracy) |
|
{ |
|
LayerParams lp; |
|
lp.name = "testAvePool"; |
|
lp.type = "Pooling"; |
|
lp.set("kernel_size", 2); |
|
lp.set("stride", 2); |
|
lp.set("pool", "AVE"); |
|
|
|
Net net; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
// 1 2 | 3 |
|
// 4 5 | 6 |
|
// ----+-- |
|
// 7 8 | 9 |
|
Mat inp = (Mat_<float>(3, 3) << 1, 2, 3, 4, 5, 6, 7, 8, 9); |
|
Mat target = (Mat_<float>(2, 2) << (1 + 2 + 4 + 5) / 4.f, (3 + 6) / 2.f, (7 + 8) / 2.f, 9); |
|
Mat tmp = blobFromImage(inp); |
|
net.setInput(blobFromImage(inp)); |
|
Mat out = net.forward(); |
|
normAssert(out, blobFromImage(target)); |
|
} |
|
|
|
// Test PriorBoxLayer in case of no aspect ratios (just squared proposals). |
|
TEST(Layer_PriorBox, squares) |
|
{ |
|
LayerParams lp; |
|
lp.name = "testPriorBox"; |
|
lp.type = "PriorBox"; |
|
lp.set("min_size", 2); |
|
lp.set("flip", true); |
|
lp.set("clip", true); |
|
float variance[] = {0.1f, 0.1f, 0.2f, 0.2f}; |
|
float aspectRatios[] = {1.0f}; // That should be ignored. |
|
lp.set("variance", DictValue::arrayReal<float*>(&variance[0], 4)); |
|
lp.set("aspect_ratio", DictValue::arrayReal<float*>(&aspectRatios[0], 1)); |
|
|
|
Net net; |
|
int id = net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.connect(0, 0, id, 1); // The second input is an input image. Shapes are used for boxes normalization. |
|
Mat inp(1, 2, CV_32F); |
|
randu(inp, -1, 1); |
|
net.setInput(blobFromImage(inp)); |
|
Mat out = net.forward(); |
|
|
|
Mat target = (Mat_<float>(4, 4) << 0.0, 0.0, 0.75, 1.0, |
|
0.25, 0.0, 1.0, 1.0, |
|
0.1f, 0.1f, 0.2f, 0.2f, |
|
0.1f, 0.1f, 0.2f, 0.2f); |
|
normAssert(out.reshape(1, 4), target); |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
// Using Intel's Model Optimizer generate .xml and .bin files: |
|
// ./ModelOptimizer -w /path/to/caffemodel -d /path/to/prototxt \ |
|
// -p FP32 -i -b ${batch_size} -o /path/to/output/folder |
|
TEST(Layer_Test_Convolution_DLDT, Accuracy) |
|
{ |
|
Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt")); |
|
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); |
|
|
|
Mat inp = blobFromNPY(_tf("blob.npy")); |
|
|
|
netDefault.setInput(inp); |
|
Mat outDefault = netDefault.forward(); |
|
|
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
|
|
normAssert(outDefault, out); |
|
} |
|
#endif // HAVE_INF_ENGINE |
|
|
|
}} // namespace
|
|
|