mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.1 KiB
122 lines
4.1 KiB
#include <algorithm> |
|
#include <iostream> |
|
#include <sstream> |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/imgproc.hpp> |
|
#include <opencv2/gapi/infer.hpp> |
|
#include <opencv2/gapi/infer/parsers.hpp> |
|
#include <opencv2/gapi/render.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
#include <opencv2/gapi/oak/oak.hpp> |
|
#include <opencv2/gapi/oak/infer.hpp> |
|
|
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ detector | | Path to compiled .blob face detector model }" |
|
"{ duration | 100 | Number of frames to pull from camera and run inference on }"; |
|
|
|
namespace custom { |
|
|
|
G_API_NET(FaceDetector, <cv::GMat(cv::GFrame)>, "sample.custom.face-detector"); |
|
|
|
using GDetections = cv::GArray<cv::Rect>; |
|
using GSize = cv::GOpaque<cv::Size>; |
|
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>; |
|
|
|
G_API_OP(BBoxes, <GPrims(GDetections)>, "sample.custom.b-boxes") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) { |
|
// This kernel converts the rectangles into G-API's |
|
// rendering primitives |
|
static void run(const std::vector<cv::Rect> &in_face_rcs, |
|
std::vector<cv::gapi::wip::draw::Prim> &out_prims) { |
|
out_prims.clear(); |
|
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) { |
|
return cv::gapi::wip::draw::Rect(rc, clr, 2); |
|
}; |
|
for (auto &&rc : in_face_rcs) { |
|
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green |
|
} |
|
} |
|
}; |
|
|
|
} // namespace custom |
|
|
|
int main(int argc, char *argv[]) { |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
const auto det_name = cmd.get<std::string>("detector"); |
|
const auto duration = cmd.get<int>("duration"); |
|
|
|
if (det_name.empty()) { |
|
std::cerr << "FATAL: path to detection model is not provided for the sample." |
|
<< "Please specify it with --detector options." |
|
<< std::endl; |
|
return 1; |
|
} |
|
|
|
// Prepare G-API kernels and networks packages: |
|
auto detector = cv::gapi::oak::Params<custom::FaceDetector>(det_name); |
|
auto networks = cv::gapi::networks(detector); |
|
|
|
auto kernels = cv::gapi::combine( |
|
cv::gapi::kernels<custom::OCVBBoxes>(), |
|
cv::gapi::oak::kernels()); |
|
|
|
auto args = cv::compile_args(kernels, networks); |
|
|
|
// Initialize graph structure |
|
cv::GFrame in; |
|
cv::GFrame copy = cv::gapi::oak::copy(in); // NV12 transfered to host + passthrough copy for infer |
|
cv::GOpaque<cv::Size> sz = cv::gapi::streaming::size(copy); |
|
|
|
// infer is not affected by the actual copy here |
|
cv::GMat blob = cv::gapi::infer<custom::FaceDetector>(copy); |
|
// FIXME: OAK infer detects faces slightly out of frame bounds |
|
cv::GArray<cv::Rect> rcs = cv::gapi::parseSSD(blob, sz, 0.5f, true, false); |
|
auto rendered = cv::gapi::wip::draw::renderFrame(copy, custom::BBoxes::on(rcs)); |
|
// on-the-fly conversion NV12->BGR |
|
cv::GMat out = cv::gapi::streaming::BGR(rendered); |
|
|
|
auto pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out, rcs)) |
|
.compileStreaming(std::move(args)); |
|
|
|
// Graph execution |
|
pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::oak::ColorCamera>()); |
|
pipeline.start(); |
|
|
|
cv::Mat out_mat; |
|
std::vector<cv::Rect> out_dets; |
|
int frames = 0; |
|
while (pipeline.pull(cv::gout(out_mat, out_dets))) { |
|
std::string name = "oak_infer_frame_" + std::to_string(frames) + ".png"; |
|
|
|
cv::imwrite(name, out_mat); |
|
|
|
if (!out_dets.empty()) { |
|
std::cout << "Got " << out_dets.size() << " detections on frame #" << frames << std::endl; |
|
} |
|
|
|
++frames; |
|
if (frames == duration) { |
|
pipeline.stop(); |
|
break; |
|
} |
|
} |
|
std::cout << "Pipeline finished. Processed " << frames << " frames" << std::endl; |
|
return 0; |
|
}
|
|
|