mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
8.0 KiB
186 lines
8.0 KiB
#include <opencv2/core.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/features2d.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <vector> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static void help(char* argv[]) |
|
{ |
|
cout << "\n This program demonstrates how to detect compute and match ORB BRISK and AKAZE descriptors \n" |
|
"Usage: \n " |
|
<< argv[0] << " --image1=<image1(basketball1.png as default)> --image2=<image2(basketball2.png as default)>\n" |
|
"Press a key when image window is active to change algorithm or descriptor"; |
|
} |
|
|
|
|
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
vector<String> typeDesc; |
|
vector<String> typeAlgoMatch; |
|
vector<String> fileName; |
|
// This descriptor are going to be detect and compute |
|
typeDesc.push_back("AKAZE-DESCRIPTOR_KAZE_UPRIGHT"); // see https://docs.opencv.org/3.4/d8/d30/classcv_1_1AKAZE.html |
|
typeDesc.push_back("AKAZE"); // see http://docs.opencv.org/3.4/d8/d30/classcv_1_1AKAZE.html |
|
typeDesc.push_back("ORB"); // see http://docs.opencv.org/3.4/de/dbf/classcv_1_1BRISK.html |
|
typeDesc.push_back("BRISK"); // see http://docs.opencv.org/3.4/db/d95/classcv_1_1ORB.html |
|
// This algorithm would be used to match descriptors see http://docs.opencv.org/3.4/db/d39/classcv_1_1DescriptorMatcher.html#ab5dc5036569ecc8d47565007fa518257 |
|
typeAlgoMatch.push_back("BruteForce"); |
|
typeAlgoMatch.push_back("BruteForce-L1"); |
|
typeAlgoMatch.push_back("BruteForce-Hamming"); |
|
typeAlgoMatch.push_back("BruteForce-Hamming(2)"); |
|
cv::CommandLineParser parser(argc, argv, |
|
"{ @image1 | basketball1.png | }" |
|
"{ @image2 | basketball2.png | }" |
|
"{help h ||}"); |
|
if (parser.has("help")) |
|
{ |
|
help(argv); |
|
return 0; |
|
} |
|
fileName.push_back(samples::findFile(parser.get<string>(0))); |
|
fileName.push_back(samples::findFile(parser.get<string>(1))); |
|
Mat img1 = imread(fileName[0], IMREAD_GRAYSCALE); |
|
Mat img2 = imread(fileName[1], IMREAD_GRAYSCALE); |
|
if (img1.empty()) |
|
{ |
|
cerr << "Image " << fileName[0] << " is empty or cannot be found" << endl; |
|
return 1; |
|
} |
|
if (img2.empty()) |
|
{ |
|
cerr << "Image " << fileName[1] << " is empty or cannot be found" << endl; |
|
return 1; |
|
} |
|
|
|
vector<double> desMethCmp; |
|
Ptr<Feature2D> b; |
|
|
|
// Descriptor loop |
|
vector<String>::iterator itDesc; |
|
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); ++itDesc) |
|
{ |
|
Ptr<DescriptorMatcher> descriptorMatcher; |
|
// Match between img1 and img2 |
|
vector<DMatch> matches; |
|
// keypoint for img1 and img2 |
|
vector<KeyPoint> keyImg1, keyImg2; |
|
// Descriptor for img1 and img2 |
|
Mat descImg1, descImg2; |
|
vector<String>::iterator itMatcher = typeAlgoMatch.end(); |
|
if (*itDesc == "AKAZE-DESCRIPTOR_KAZE_UPRIGHT"){ |
|
b = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT); |
|
} |
|
if (*itDesc == "AKAZE"){ |
|
b = AKAZE::create(); |
|
} |
|
if (*itDesc == "ORB"){ |
|
b = ORB::create(); |
|
} |
|
else if (*itDesc == "BRISK"){ |
|
b = BRISK::create(); |
|
} |
|
try |
|
{ |
|
// We can detect keypoint with detect method |
|
b->detect(img1, keyImg1, Mat()); |
|
// and compute their descriptors with method compute |
|
b->compute(img1, keyImg1, descImg1); |
|
// or detect and compute descriptors in one step |
|
b->detectAndCompute(img2, Mat(),keyImg2, descImg2,false); |
|
// Match method loop |
|
for (itMatcher = typeAlgoMatch.begin(); itMatcher != typeAlgoMatch.end(); ++itMatcher){ |
|
descriptorMatcher = DescriptorMatcher::create(*itMatcher); |
|
if ((*itMatcher == "BruteForce-Hamming" || *itMatcher == "BruteForce-Hamming(2)") && (b->descriptorType() == CV_32F || b->defaultNorm() <= NORM_L2SQR)) |
|
{ |
|
cout << "**************************************************************************\n"; |
|
cout << "It's strange. You should use Hamming distance only for a binary descriptor\n"; |
|
cout << "**************************************************************************\n"; |
|
} |
|
if ((*itMatcher == "BruteForce" || *itMatcher == "BruteForce-L1") && (b->defaultNorm() >= NORM_HAMMING)) |
|
{ |
|
cout << "**************************************************************************\n"; |
|
cout << "It's strange. You shouldn't use L1 or L2 distance for a binary descriptor\n"; |
|
cout << "**************************************************************************\n"; |
|
} |
|
try |
|
{ |
|
descriptorMatcher->match(descImg1, descImg2, matches, Mat()); |
|
// Keep best matches only to have a nice drawing. |
|
// We sort distance between descriptor matches |
|
Mat index; |
|
int nbMatch=int(matches.size()); |
|
Mat tab(nbMatch, 1, CV_32F); |
|
for (int i = 0; i<nbMatch; i++) |
|
{ |
|
tab.at<float>(i, 0) = matches[i].distance; |
|
} |
|
sortIdx(tab, index, SORT_EVERY_COLUMN + SORT_ASCENDING); |
|
vector<DMatch> bestMatches; |
|
for (int i = 0; i<30; i++) |
|
{ |
|
bestMatches.push_back(matches[index.at<int>(i, 0)]); |
|
} |
|
Mat result; |
|
drawMatches(img1, keyImg1, img2, keyImg2, bestMatches, result); |
|
namedWindow(*itDesc+": "+*itMatcher, WINDOW_AUTOSIZE); |
|
imshow(*itDesc + ": " + *itMatcher, result); |
|
// Saved result could be wrong due to bug 4308 |
|
FileStorage fs(*itDesc + "_" + *itMatcher + ".yml", FileStorage::WRITE); |
|
fs<<"Matches"<<matches; |
|
vector<DMatch>::iterator it; |
|
cout<<"**********Match results**********\n"; |
|
cout << "Index \tIndex \tdistance\n"; |
|
cout << "in img1\tin img2\n"; |
|
// Use to compute distance between keyPoint matches and to evaluate match algorithm |
|
double cumSumDist2=0; |
|
for (it = bestMatches.begin(); it != bestMatches.end(); ++it) |
|
{ |
|
cout << it->queryIdx << "\t" << it->trainIdx << "\t" << it->distance << "\n"; |
|
Point2d p=keyImg1[it->queryIdx].pt-keyImg2[it->trainIdx].pt; |
|
cumSumDist2=p.x*p.x+p.y*p.y; |
|
} |
|
desMethCmp.push_back(cumSumDist2); |
|
waitKey(); |
|
} |
|
catch (const Exception& e) |
|
{ |
|
cout << e.msg << endl; |
|
cout << "Cumulative distance cannot be computed." << endl; |
|
desMethCmp.push_back(-1); |
|
} |
|
} |
|
} |
|
catch (const Exception& e) |
|
{ |
|
cerr << "Exception: " << e.what() << endl; |
|
cout << "Feature : " << *itDesc << "\n"; |
|
if (itMatcher != typeAlgoMatch.end()) |
|
{ |
|
cout << "Matcher : " << *itMatcher << "\n"; |
|
} |
|
} |
|
} |
|
int i=0; |
|
cout << "Cumulative distance between keypoint match for different algorithm and feature detector \n\t"; |
|
cout << "We cannot say which is the best but we can say results are different! \n\t"; |
|
for (vector<String>::iterator itMatcher = typeAlgoMatch.begin(); itMatcher != typeAlgoMatch.end(); ++itMatcher) |
|
{ |
|
cout<<*itMatcher<<"\t"; |
|
} |
|
cout << "\n"; |
|
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); ++itDesc) |
|
{ |
|
cout << *itDesc << "\t"; |
|
for (vector<String>::iterator itMatcher = typeAlgoMatch.begin(); itMatcher != typeAlgoMatch.end(); ++itMatcher, ++i) |
|
{ |
|
cout << desMethCmp[i]<<"\t"; |
|
} |
|
cout<<"\n"; |
|
} |
|
return 0; |
|
}
|
|
|