mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1533 lines
56 KiB
1533 lines
56 KiB
/* |
|
* transupp.c |
|
* |
|
* Copyright (C) 1997-2001, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains image transformation routines and other utility code |
|
* used by the jpegtran sample application. These are NOT part of the core |
|
* JPEG library. But we keep these routines separate from jpegtran.c to |
|
* ease the task of maintaining jpegtran-like programs that have other user |
|
* interfaces. |
|
*/ |
|
|
|
/* Although this file really shouldn't have access to the library internals, |
|
* it's helpful to let it call jround_up() and jcopy_block_row(). |
|
*/ |
|
#define JPEG_INTERNALS |
|
|
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "transupp.h" /* My own external interface */ |
|
#include <ctype.h> /* to declare isdigit() */ |
|
|
|
|
|
#if TRANSFORMS_SUPPORTED |
|
|
|
/* |
|
* Lossless image transformation routines. These routines work on DCT |
|
* coefficient arrays and thus do not require any lossy decompression |
|
* or recompression of the image. |
|
* Thanks to Guido Vollbeding for the initial design and code of this feature, |
|
* and to Ben Jackson for introducing the cropping feature. |
|
* |
|
* Horizontal flipping is done in-place, using a single top-to-bottom |
|
* pass through the virtual source array. It will thus be much the |
|
* fastest option for images larger than main memory. |
|
* |
|
* The other routines require a set of destination virtual arrays, so they |
|
* need twice as much memory as jpegtran normally does. The destination |
|
* arrays are always written in normal scan order (top to bottom) because |
|
* the virtual array manager expects this. The source arrays will be scanned |
|
* in the corresponding order, which means multiple passes through the source |
|
* arrays for most of the transforms. That could result in much thrashing |
|
* if the image is larger than main memory. |
|
* |
|
* If cropping or trimming is involved, the destination arrays may be smaller |
|
* than the source arrays. Note it is not possible to do horizontal flip |
|
* in-place when a nonzero Y crop offset is specified, since we'd have to move |
|
* data from one block row to another but the virtual array manager doesn't |
|
* guarantee we can touch more than one row at a time. So in that case, |
|
* we have to use a separate destination array. |
|
* |
|
* Some notes about the operating environment of the individual transform |
|
* routines: |
|
* 1. Both the source and destination virtual arrays are allocated from the |
|
* source JPEG object, and therefore should be manipulated by calling the |
|
* source's memory manager. |
|
* 2. The destination's component count should be used. It may be smaller |
|
* than the source's when forcing to grayscale. |
|
* 3. Likewise the destination's sampling factors should be used. When |
|
* forcing to grayscale the destination's sampling factors will be all 1, |
|
* and we may as well take that as the effective iMCU size. |
|
* 4. When "trim" is in effect, the destination's dimensions will be the |
|
* trimmed values but the source's will be untrimmed. |
|
* 5. When "crop" is in effect, the destination's dimensions will be the |
|
* cropped values but the source's will be uncropped. Each transform |
|
* routine is responsible for picking up source data starting at the |
|
* correct X and Y offset for the crop region. (The X and Y offsets |
|
* passed to the transform routines are measured in iMCU blocks of the |
|
* destination.) |
|
* 6. All the routines assume that the source and destination buffers are |
|
* padded out to a full iMCU boundary. This is true, although for the |
|
* source buffer it is an undocumented property of jdcoefct.c. |
|
*/ |
|
|
|
|
|
LOCAL(void) |
|
do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* Crop. This is only used when no rotate/flip is requested with the crop. */ |
|
{ |
|
JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; |
|
int ci, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
jpeg_component_info *compptr; |
|
|
|
/* We simply have to copy the right amount of data (the destination's |
|
* image size) starting at the given X and Y offsets in the source. |
|
*/ |
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_y + y_crop_blocks, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
|
dst_buffer[offset_y], |
|
compptr->width_in_blocks); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays) |
|
/* Horizontal flip; done in-place, so no separate dest array is required. |
|
* NB: this only works when y_crop_offset is zero. |
|
*/ |
|
{ |
|
JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; |
|
int ci, k, offset_y; |
|
JBLOCKARRAY buffer; |
|
JCOEFPTR ptr1, ptr2; |
|
JCOEF temp1, temp2; |
|
jpeg_component_info *compptr; |
|
|
|
/* Horizontal mirroring of DCT blocks is accomplished by swapping |
|
* pairs of blocks in-place. Within a DCT block, we perform horizontal |
|
* mirroring by changing the signs of odd-numbered columns. |
|
* Partial iMCUs at the right edge are left untouched. |
|
*/ |
|
MCU_cols = srcinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
comp_width = MCU_cols * compptr->h_samp_factor; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
for (blk_y = 0; blk_y < compptr->height_in_blocks; |
|
blk_y += compptr->v_samp_factor) { |
|
buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
/* Do the mirroring */ |
|
for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { |
|
ptr1 = buffer[offset_y][blk_x]; |
|
ptr2 = buffer[offset_y][comp_width - blk_x - 1]; |
|
/* this unrolled loop doesn't need to know which row it's on... */ |
|
for (k = 0; k < DCTSIZE2; k += 2) { |
|
temp1 = *ptr1; /* swap even column */ |
|
temp2 = *ptr2; |
|
*ptr1++ = temp2; |
|
*ptr2++ = temp1; |
|
temp1 = *ptr1; /* swap odd column with sign change */ |
|
temp2 = *ptr2; |
|
*ptr1++ = -temp2; |
|
*ptr2++ = -temp1; |
|
} |
|
} |
|
if (x_crop_blocks > 0) { |
|
/* Now left-justify the portion of the data to be kept. |
|
* We can't use a single jcopy_block_row() call because that routine |
|
* depends on memcpy(), whose behavior is unspecified for overlapping |
|
* source and destination areas. Sigh. |
|
*/ |
|
for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { |
|
jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, |
|
buffer[offset_y] + blk_x, |
|
(JDIMENSION) 1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* Horizontal flip in general cropping case */ |
|
{ |
|
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
|
JDIMENSION x_crop_blocks, y_crop_blocks; |
|
int ci, k, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
JBLOCKROW src_row_ptr, dst_row_ptr; |
|
JCOEFPTR src_ptr, dst_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* Here we must output into a separate array because we can't touch |
|
* different rows of a single virtual array simultaneously. Otherwise, |
|
* this is essentially the same as the routine above. |
|
*/ |
|
MCU_cols = srcinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
comp_width = MCU_cols * compptr->h_samp_factor; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_y + y_crop_blocks, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
dst_row_ptr = dst_buffer[offset_y]; |
|
src_row_ptr = src_buffer[offset_y]; |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Do the mirrorable blocks */ |
|
dst_ptr = dst_row_ptr[dst_blk_x]; |
|
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
|
/* this unrolled loop doesn't need to know which row it's on... */ |
|
for (k = 0; k < DCTSIZE2; k += 2) { |
|
*dst_ptr++ = *src_ptr++; /* copy even column */ |
|
*dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ |
|
} |
|
} else { |
|
/* Copy last partial block(s) verbatim */ |
|
jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
|
dst_row_ptr + dst_blk_x, |
|
(JDIMENSION) 1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* Vertical flip */ |
|
{ |
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
|
JDIMENSION x_crop_blocks, y_crop_blocks; |
|
int ci, i, j, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
JBLOCKROW src_row_ptr, dst_row_ptr; |
|
JCOEFPTR src_ptr, dst_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* We output into a separate array because we can't touch different |
|
* rows of the source virtual array simultaneously. Otherwise, this |
|
* is a pretty straightforward analog of horizontal flip. |
|
* Within a DCT block, vertical mirroring is done by changing the signs |
|
* of odd-numbered rows. |
|
* Partial iMCUs at the bottom edge are copied verbatim. |
|
*/ |
|
MCU_rows = srcinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
comp_height = MCU_rows * compptr->v_samp_factor; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
if (y_crop_blocks + dst_blk_y < comp_height) { |
|
/* Row is within the mirrorable area. */ |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
comp_height - y_crop_blocks - dst_blk_y - |
|
(JDIMENSION) compptr->v_samp_factor, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
} else { |
|
/* Bottom-edge blocks will be copied verbatim. */ |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_y + y_crop_blocks, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
} |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
if (y_crop_blocks + dst_blk_y < comp_height) { |
|
/* Row is within the mirrorable area. */ |
|
dst_row_ptr = dst_buffer[offset_y]; |
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
|
src_row_ptr += x_crop_blocks; |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
|
dst_blk_x++) { |
|
dst_ptr = dst_row_ptr[dst_blk_x]; |
|
src_ptr = src_row_ptr[dst_blk_x]; |
|
for (i = 0; i < DCTSIZE; i += 2) { |
|
/* copy even row */ |
|
for (j = 0; j < DCTSIZE; j++) |
|
*dst_ptr++ = *src_ptr++; |
|
/* copy odd row with sign change */ |
|
for (j = 0; j < DCTSIZE; j++) |
|
*dst_ptr++ = - *src_ptr++; |
|
} |
|
} |
|
} else { |
|
/* Just copy row verbatim. */ |
|
jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
|
dst_buffer[offset_y], |
|
compptr->width_in_blocks); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* Transpose source into destination */ |
|
{ |
|
JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; |
|
int ci, i, j, offset_x, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
JCOEFPTR src_ptr, dst_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* Transposing pixels within a block just requires transposing the |
|
* DCT coefficients. |
|
* Partial iMCUs at the edges require no special treatment; we simply |
|
* process all the available DCT blocks for every component. |
|
*/ |
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
|
dst_blk_x += compptr->h_samp_factor) { |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_x + x_crop_blocks, |
|
(JDIMENSION) compptr->h_samp_factor, FALSE); |
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; |
|
for (i = 0; i < DCTSIZE; i++) |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* 90 degree rotation is equivalent to |
|
* 1. Transposing the image; |
|
* 2. Horizontal mirroring. |
|
* These two steps are merged into a single processing routine. |
|
*/ |
|
{ |
|
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
|
JDIMENSION x_crop_blocks, y_crop_blocks; |
|
int ci, i, j, offset_x, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
JCOEFPTR src_ptr, dst_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs |
|
* at the (output) right edge properly. They just get transposed and |
|
* not mirrored. |
|
*/ |
|
MCU_cols = srcinfo->image_height / (dstinfo->max_h_samp_factor * DCTSIZE); |
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
comp_width = MCU_cols * compptr->h_samp_factor; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
|
dst_blk_x += compptr->h_samp_factor) { |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Block is within the mirrorable area. */ |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
comp_width - x_crop_blocks - dst_blk_x - |
|
(JDIMENSION) compptr->h_samp_factor, |
|
(JDIMENSION) compptr->h_samp_factor, FALSE); |
|
} else { |
|
/* Edge blocks are transposed but not mirrored. */ |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_x + x_crop_blocks, |
|
(JDIMENSION) compptr->h_samp_factor, FALSE); |
|
} |
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Block is within the mirrorable area. */ |
|
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
|
[dst_blk_y + offset_y + y_crop_blocks]; |
|
for (i = 0; i < DCTSIZE; i++) { |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
i++; |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
|
} |
|
} else { |
|
/* Edge blocks are transposed but not mirrored. */ |
|
src_ptr = src_buffer[offset_x] |
|
[dst_blk_y + offset_y + y_crop_blocks]; |
|
for (i = 0; i < DCTSIZE; i++) |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* 270 degree rotation is equivalent to |
|
* 1. Horizontal mirroring; |
|
* 2. Transposing the image. |
|
* These two steps are merged into a single processing routine. |
|
*/ |
|
{ |
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
|
JDIMENSION x_crop_blocks, y_crop_blocks; |
|
int ci, i, j, offset_x, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
JCOEFPTR src_ptr, dst_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs |
|
* at the (output) bottom edge properly. They just get transposed and |
|
* not mirrored. |
|
*/ |
|
MCU_rows = srcinfo->image_width / (dstinfo->max_v_samp_factor * DCTSIZE); |
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
comp_height = MCU_rows * compptr->v_samp_factor; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
|
dst_blk_x += compptr->h_samp_factor) { |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_x + x_crop_blocks, |
|
(JDIMENSION) compptr->h_samp_factor, FALSE); |
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
|
if (y_crop_blocks + dst_blk_y < comp_height) { |
|
/* Block is within the mirrorable area. */ |
|
src_ptr = src_buffer[offset_x] |
|
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
|
for (i = 0; i < DCTSIZE; i++) { |
|
for (j = 0; j < DCTSIZE; j++) { |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
j++; |
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
|
} |
|
} |
|
} else { |
|
/* Edge blocks are transposed but not mirrored. */ |
|
src_ptr = src_buffer[offset_x] |
|
[dst_blk_y + offset_y + y_crop_blocks]; |
|
for (i = 0; i < DCTSIZE; i++) |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* 180 degree rotation is equivalent to |
|
* 1. Vertical mirroring; |
|
* 2. Horizontal mirroring. |
|
* These two steps are merged into a single processing routine. |
|
*/ |
|
{ |
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
|
JDIMENSION x_crop_blocks, y_crop_blocks; |
|
int ci, i, j, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
JBLOCKROW src_row_ptr, dst_row_ptr; |
|
JCOEFPTR src_ptr, dst_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
MCU_cols = srcinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
|
MCU_rows = srcinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
comp_width = MCU_cols * compptr->h_samp_factor; |
|
comp_height = MCU_rows * compptr->v_samp_factor; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
if (y_crop_blocks + dst_blk_y < comp_height) { |
|
/* Row is within the vertically mirrorable area. */ |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
comp_height - y_crop_blocks - dst_blk_y - |
|
(JDIMENSION) compptr->v_samp_factor, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
} else { |
|
/* Bottom-edge rows are only mirrored horizontally. */ |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_y + y_crop_blocks, |
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
|
} |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
dst_row_ptr = dst_buffer[offset_y]; |
|
if (y_crop_blocks + dst_blk_y < comp_height) { |
|
/* Row is within the mirrorable area. */ |
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
|
dst_ptr = dst_row_ptr[dst_blk_x]; |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Process the blocks that can be mirrored both ways. */ |
|
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
|
for (i = 0; i < DCTSIZE; i += 2) { |
|
/* For even row, negate every odd column. */ |
|
for (j = 0; j < DCTSIZE; j += 2) { |
|
*dst_ptr++ = *src_ptr++; |
|
*dst_ptr++ = - *src_ptr++; |
|
} |
|
/* For odd row, negate every even column. */ |
|
for (j = 0; j < DCTSIZE; j += 2) { |
|
*dst_ptr++ = - *src_ptr++; |
|
*dst_ptr++ = *src_ptr++; |
|
} |
|
} |
|
} else { |
|
/* Any remaining right-edge blocks are only mirrored vertically. */ |
|
src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; |
|
for (i = 0; i < DCTSIZE; i += 2) { |
|
for (j = 0; j < DCTSIZE; j++) |
|
*dst_ptr++ = *src_ptr++; |
|
for (j = 0; j < DCTSIZE; j++) |
|
*dst_ptr++ = - *src_ptr++; |
|
} |
|
} |
|
} |
|
} else { |
|
/* Remaining rows are just mirrored horizontally. */ |
|
src_row_ptr = src_buffer[offset_y]; |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Process the blocks that can be mirrored. */ |
|
dst_ptr = dst_row_ptr[dst_blk_x]; |
|
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
|
for (i = 0; i < DCTSIZE2; i += 2) { |
|
*dst_ptr++ = *src_ptr++; |
|
*dst_ptr++ = - *src_ptr++; |
|
} |
|
} else { |
|
/* Any remaining right-edge blocks are only copied. */ |
|
jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
|
dst_row_ptr + dst_blk_x, |
|
(JDIMENSION) 1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jvirt_barray_ptr *dst_coef_arrays) |
|
/* Transverse transpose is equivalent to |
|
* 1. 180 degree rotation; |
|
* 2. Transposition; |
|
* or |
|
* 1. Horizontal mirroring; |
|
* 2. Transposition; |
|
* 3. Horizontal mirroring. |
|
* These steps are merged into a single processing routine. |
|
*/ |
|
{ |
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
|
JDIMENSION x_crop_blocks, y_crop_blocks; |
|
int ci, i, j, offset_x, offset_y; |
|
JBLOCKARRAY src_buffer, dst_buffer; |
|
JCOEFPTR src_ptr, dst_ptr; |
|
jpeg_component_info *compptr; |
|
|
|
MCU_cols = srcinfo->image_height / (dstinfo->max_h_samp_factor * DCTSIZE); |
|
MCU_rows = srcinfo->image_width / (dstinfo->max_v_samp_factor * DCTSIZE); |
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
comp_width = MCU_cols * compptr->h_samp_factor; |
|
comp_height = MCU_rows * compptr->v_samp_factor; |
|
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
|
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
|
dst_blk_y += compptr->v_samp_factor) { |
|
dst_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
|
dst_blk_x += compptr->h_samp_factor) { |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Block is within the mirrorable area. */ |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
comp_width - x_crop_blocks - dst_blk_x - |
|
(JDIMENSION) compptr->h_samp_factor, |
|
(JDIMENSION) compptr->h_samp_factor, FALSE); |
|
} else { |
|
src_buffer = (*srcinfo->mem->access_virt_barray) |
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
|
dst_blk_x + x_crop_blocks, |
|
(JDIMENSION) compptr->h_samp_factor, FALSE); |
|
} |
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
|
if (y_crop_blocks + dst_blk_y < comp_height) { |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Block is within the mirrorable area. */ |
|
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
|
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
|
for (i = 0; i < DCTSIZE; i++) { |
|
for (j = 0; j < DCTSIZE; j++) { |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
j++; |
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
|
} |
|
i++; |
|
for (j = 0; j < DCTSIZE; j++) { |
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
|
j++; |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
} |
|
} |
|
} else { |
|
/* Right-edge blocks are mirrored in y only */ |
|
src_ptr = src_buffer[offset_x] |
|
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
|
for (i = 0; i < DCTSIZE; i++) { |
|
for (j = 0; j < DCTSIZE; j++) { |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
j++; |
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
|
} |
|
} |
|
} |
|
} else { |
|
if (x_crop_blocks + dst_blk_x < comp_width) { |
|
/* Bottom-edge blocks are mirrored in x only */ |
|
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
|
[dst_blk_y + offset_y + y_crop_blocks]; |
|
for (i = 0; i < DCTSIZE; i++) { |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
i++; |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
|
} |
|
} else { |
|
/* At lower right corner, just transpose, no mirroring */ |
|
src_ptr = src_buffer[offset_x] |
|
[dst_blk_y + offset_y + y_crop_blocks]; |
|
for (i = 0; i < DCTSIZE; i++) |
|
for (j = 0; j < DCTSIZE; j++) |
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. |
|
* Returns TRUE if valid integer found, FALSE if not. |
|
* *strptr is advanced over the digit string, and *result is set to its value. |
|
*/ |
|
|
|
LOCAL(boolean) |
|
jt_read_integer (const char ** strptr, JDIMENSION * result) |
|
{ |
|
const char * ptr = *strptr; |
|
JDIMENSION val = 0; |
|
|
|
for (; isdigit(*ptr); ptr++) { |
|
val = val * 10 + (JDIMENSION) (*ptr - '0'); |
|
} |
|
*result = val; |
|
if (ptr == *strptr) |
|
return FALSE; /* oops, no digits */ |
|
*strptr = ptr; |
|
return TRUE; |
|
} |
|
|
|
|
|
/* Parse a crop specification (written in X11 geometry style). |
|
* The routine returns TRUE if the spec string is valid, FALSE if not. |
|
* |
|
* The crop spec string should have the format |
|
* <width>x<height>{+-}<xoffset>{+-}<yoffset> |
|
* where width, height, xoffset, and yoffset are unsigned integers. |
|
* Each of the elements can be omitted to indicate a default value. |
|
* (A weakness of this style is that it is not possible to omit xoffset |
|
* while specifying yoffset, since they look alike.) |
|
* |
|
* This code is loosely based on XParseGeometry from the X11 distribution. |
|
*/ |
|
|
|
GLOBAL(boolean) |
|
jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec) |
|
{ |
|
info->crop = FALSE; |
|
info->crop_width_set = JCROP_UNSET; |
|
info->crop_height_set = JCROP_UNSET; |
|
info->crop_xoffset_set = JCROP_UNSET; |
|
info->crop_yoffset_set = JCROP_UNSET; |
|
|
|
if (isdigit(*spec)) { |
|
/* fetch width */ |
|
if (! jt_read_integer(&spec, &info->crop_width)) |
|
return FALSE; |
|
info->crop_width_set = JCROP_POS; |
|
} |
|
if (*spec == 'x' || *spec == 'X') { |
|
/* fetch height */ |
|
spec++; |
|
if (! jt_read_integer(&spec, &info->crop_height)) |
|
return FALSE; |
|
info->crop_height_set = JCROP_POS; |
|
} |
|
if (*spec == '+' || *spec == '-') { |
|
/* fetch xoffset */ |
|
info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
|
spec++; |
|
if (! jt_read_integer(&spec, &info->crop_xoffset)) |
|
return FALSE; |
|
} |
|
if (*spec == '+' || *spec == '-') { |
|
/* fetch yoffset */ |
|
info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
|
spec++; |
|
if (! jt_read_integer(&spec, &info->crop_yoffset)) |
|
return FALSE; |
|
} |
|
/* We had better have gotten to the end of the string. */ |
|
if (*spec != '\0') |
|
return FALSE; |
|
info->crop = TRUE; |
|
return TRUE; |
|
} |
|
|
|
|
|
/* Trim off any partial iMCUs on the indicated destination edge */ |
|
|
|
LOCAL(void) |
|
trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width) |
|
{ |
|
JDIMENSION MCU_cols; |
|
|
|
MCU_cols = info->output_width / (info->max_h_samp_factor * DCTSIZE); |
|
if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == |
|
full_width / (info->max_h_samp_factor * DCTSIZE)) |
|
info->output_width = MCU_cols * (info->max_h_samp_factor * DCTSIZE); |
|
} |
|
|
|
LOCAL(void) |
|
trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height) |
|
{ |
|
JDIMENSION MCU_rows; |
|
|
|
MCU_rows = info->output_height / (info->max_v_samp_factor * DCTSIZE); |
|
if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == |
|
full_height / (info->max_v_samp_factor * DCTSIZE)) |
|
info->output_height = MCU_rows * (info->max_v_samp_factor * DCTSIZE); |
|
} |
|
|
|
|
|
/* Request any required workspace. |
|
* |
|
* This routine figures out the size that the output image will be |
|
* (which implies that all the transform parameters must be set before |
|
* it is called). |
|
* |
|
* We allocate the workspace virtual arrays from the source decompression |
|
* object, so that all the arrays (both the original data and the workspace) |
|
* will be taken into account while making memory management decisions. |
|
* Hence, this routine must be called after jpeg_read_header (which reads |
|
* the image dimensions) and before jpeg_read_coefficients (which realizes |
|
* the source's virtual arrays). |
|
*/ |
|
|
|
GLOBAL(void) |
|
jtransform_request_workspace (j_decompress_ptr srcinfo, |
|
jpeg_transform_info *info) |
|
{ |
|
jvirt_barray_ptr *coef_arrays = NULL; |
|
boolean need_workspace, transpose_it; |
|
jpeg_component_info *compptr; |
|
JDIMENSION xoffset, yoffset, width_in_iMCUs, height_in_iMCUs; |
|
JDIMENSION width_in_blocks, height_in_blocks; |
|
int ci, h_samp_factor, v_samp_factor; |
|
|
|
/* Determine number of components in output image */ |
|
if (info->force_grayscale && |
|
srcinfo->jpeg_color_space == JCS_YCbCr && |
|
srcinfo->num_components == 3) { |
|
/* We'll only process the first component */ |
|
info->num_components = 1; |
|
} else { |
|
/* Process all the components */ |
|
info->num_components = srcinfo->num_components; |
|
} |
|
/* If there is only one output component, force the iMCU size to be 1; |
|
* else use the source iMCU size. (This allows us to do the right thing |
|
* when reducing color to grayscale, and also provides a handy way of |
|
* cleaning up "funny" grayscale images whose sampling factors are not 1x1.) |
|
*/ |
|
|
|
switch (info->transform) { |
|
case JXFORM_TRANSPOSE: |
|
case JXFORM_TRANSVERSE: |
|
case JXFORM_ROT_90: |
|
case JXFORM_ROT_270: |
|
info->output_width = srcinfo->image_height; |
|
info->output_height = srcinfo->image_width; |
|
if (info->num_components == 1) { |
|
info->max_h_samp_factor = 1; |
|
info->max_v_samp_factor = 1; |
|
} else { |
|
info->max_h_samp_factor = srcinfo->max_v_samp_factor; |
|
info->max_v_samp_factor = srcinfo->max_h_samp_factor; |
|
} |
|
break; |
|
default: |
|
info->output_width = srcinfo->image_width; |
|
info->output_height = srcinfo->image_height; |
|
if (info->num_components == 1) { |
|
info->max_h_samp_factor = 1; |
|
info->max_v_samp_factor = 1; |
|
} else { |
|
info->max_h_samp_factor = srcinfo->max_h_samp_factor; |
|
info->max_v_samp_factor = srcinfo->max_v_samp_factor; |
|
} |
|
break; |
|
} |
|
|
|
/* If cropping has been requested, compute the crop area's position and |
|
* dimensions, ensuring that its upper left corner falls at an iMCU boundary. |
|
*/ |
|
if (info->crop) { |
|
/* Insert default values for unset crop parameters */ |
|
if (info->crop_xoffset_set == JCROP_UNSET) |
|
info->crop_xoffset = 0; /* default to +0 */ |
|
if (info->crop_yoffset_set == JCROP_UNSET) |
|
info->crop_yoffset = 0; /* default to +0 */ |
|
if (info->crop_xoffset >= info->output_width || |
|
info->crop_yoffset >= info->output_height) |
|
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
|
if (info->crop_width_set == JCROP_UNSET) |
|
info->crop_width = info->output_width - info->crop_xoffset; |
|
if (info->crop_height_set == JCROP_UNSET) |
|
info->crop_height = info->output_height - info->crop_yoffset; |
|
/* Ensure parameters are valid */ |
|
if (info->crop_width <= 0 || info->crop_width > info->output_width || |
|
info->crop_height <= 0 || info->crop_height > info->output_height || |
|
info->crop_xoffset > info->output_width - info->crop_width || |
|
info->crop_yoffset > info->output_height - info->crop_height) |
|
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
|
/* Convert negative crop offsets into regular offsets */ |
|
if (info->crop_xoffset_set == JCROP_NEG) |
|
xoffset = info->output_width - info->crop_width - info->crop_xoffset; |
|
else |
|
xoffset = info->crop_xoffset; |
|
if (info->crop_yoffset_set == JCROP_NEG) |
|
yoffset = info->output_height - info->crop_height - info->crop_yoffset; |
|
else |
|
yoffset = info->crop_yoffset; |
|
/* Now adjust so that upper left corner falls at an iMCU boundary */ |
|
info->output_width = |
|
info->crop_width + (xoffset % (info->max_h_samp_factor * DCTSIZE)); |
|
info->output_height = |
|
info->crop_height + (yoffset % (info->max_v_samp_factor * DCTSIZE)); |
|
/* Save x/y offsets measured in iMCUs */ |
|
info->x_crop_offset = xoffset / (info->max_h_samp_factor * DCTSIZE); |
|
info->y_crop_offset = yoffset / (info->max_v_samp_factor * DCTSIZE); |
|
} else { |
|
info->x_crop_offset = 0; |
|
info->y_crop_offset = 0; |
|
} |
|
|
|
/* Figure out whether we need workspace arrays, |
|
* and if so whether they are transposed relative to the source. |
|
*/ |
|
need_workspace = FALSE; |
|
transpose_it = FALSE; |
|
switch (info->transform) { |
|
case JXFORM_NONE: |
|
if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
|
need_workspace = TRUE; |
|
/* No workspace needed if neither cropping nor transforming */ |
|
break; |
|
case JXFORM_FLIP_H: |
|
if (info->trim) |
|
trim_right_edge(info, srcinfo->image_width); |
|
if (info->y_crop_offset != 0) |
|
need_workspace = TRUE; |
|
/* do_flip_h_no_crop doesn't need a workspace array */ |
|
break; |
|
case JXFORM_FLIP_V: |
|
if (info->trim) |
|
trim_bottom_edge(info, srcinfo->image_height); |
|
/* Need workspace arrays having same dimensions as source image. */ |
|
need_workspace = TRUE; |
|
break; |
|
case JXFORM_TRANSPOSE: |
|
/* transpose does NOT have to trim anything */ |
|
/* Need workspace arrays having transposed dimensions. */ |
|
need_workspace = TRUE; |
|
transpose_it = TRUE; |
|
break; |
|
case JXFORM_TRANSVERSE: |
|
if (info->trim) { |
|
trim_right_edge(info, srcinfo->image_height); |
|
trim_bottom_edge(info, srcinfo->image_width); |
|
} |
|
/* Need workspace arrays having transposed dimensions. */ |
|
need_workspace = TRUE; |
|
transpose_it = TRUE; |
|
break; |
|
case JXFORM_ROT_90: |
|
if (info->trim) |
|
trim_right_edge(info, srcinfo->image_height); |
|
/* Need workspace arrays having transposed dimensions. */ |
|
need_workspace = TRUE; |
|
transpose_it = TRUE; |
|
break; |
|
case JXFORM_ROT_180: |
|
if (info->trim) { |
|
trim_right_edge(info, srcinfo->image_width); |
|
trim_bottom_edge(info, srcinfo->image_height); |
|
} |
|
/* Need workspace arrays having same dimensions as source image. */ |
|
need_workspace = TRUE; |
|
break; |
|
case JXFORM_ROT_270: |
|
if (info->trim) |
|
trim_bottom_edge(info, srcinfo->image_width); |
|
/* Need workspace arrays having transposed dimensions. */ |
|
need_workspace = TRUE; |
|
transpose_it = TRUE; |
|
break; |
|
} |
|
|
|
/* Allocate workspace if needed. |
|
* Note that we allocate arrays padded out to the next iMCU boundary, |
|
* so that transform routines need not worry about missing edge blocks. |
|
*/ |
|
if (need_workspace) { |
|
coef_arrays = (jvirt_barray_ptr *) |
|
(*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
|
SIZEOF(jvirt_barray_ptr) * info->num_components); |
|
width_in_iMCUs = (JDIMENSION) |
|
jdiv_round_up((long) info->output_width, |
|
(long) (info->max_h_samp_factor * DCTSIZE)); |
|
height_in_iMCUs = (JDIMENSION) |
|
jdiv_round_up((long) info->output_height, |
|
(long) (info->max_v_samp_factor * DCTSIZE)); |
|
for (ci = 0; ci < info->num_components; ci++) { |
|
compptr = srcinfo->comp_info + ci; |
|
if (info->num_components == 1) { |
|
/* we're going to force samp factors to 1x1 in this case */ |
|
h_samp_factor = v_samp_factor = 1; |
|
} else if (transpose_it) { |
|
h_samp_factor = compptr->v_samp_factor; |
|
v_samp_factor = compptr->h_samp_factor; |
|
} else { |
|
h_samp_factor = compptr->h_samp_factor; |
|
v_samp_factor = compptr->v_samp_factor; |
|
} |
|
width_in_blocks = width_in_iMCUs * h_samp_factor; |
|
height_in_blocks = height_in_iMCUs * v_samp_factor; |
|
coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
|
((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
|
width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor); |
|
} |
|
} |
|
|
|
info->workspace_coef_arrays = coef_arrays; |
|
} |
|
|
|
|
|
/* Transpose destination image parameters */ |
|
|
|
LOCAL(void) |
|
transpose_critical_parameters (j_compress_ptr dstinfo) |
|
{ |
|
int tblno, i, j, ci, itemp; |
|
jpeg_component_info *compptr; |
|
JQUANT_TBL *qtblptr; |
|
UINT16 qtemp; |
|
|
|
/* Transpose sampling factors */ |
|
for (ci = 0; ci < dstinfo->num_components; ci++) { |
|
compptr = dstinfo->comp_info + ci; |
|
itemp = compptr->h_samp_factor; |
|
compptr->h_samp_factor = compptr->v_samp_factor; |
|
compptr->v_samp_factor = itemp; |
|
} |
|
|
|
/* Transpose quantization tables */ |
|
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
|
qtblptr = dstinfo->quant_tbl_ptrs[tblno]; |
|
if (qtblptr != NULL) { |
|
for (i = 0; i < DCTSIZE; i++) { |
|
for (j = 0; j < i; j++) { |
|
qtemp = qtblptr->quantval[i*DCTSIZE+j]; |
|
qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; |
|
qtblptr->quantval[j*DCTSIZE+i] = qtemp; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* Adjust Exif image parameters. |
|
* |
|
* We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. |
|
*/ |
|
|
|
LOCAL(void) |
|
adjust_exif_parameters (JOCTET FAR * data, unsigned int length, |
|
JDIMENSION new_width, JDIMENSION new_height) |
|
{ |
|
boolean is_motorola; /* Flag for byte order */ |
|
unsigned int number_of_tags, tagnum; |
|
unsigned int firstoffset, offset; |
|
JDIMENSION new_value; |
|
|
|
if (length < 12) return; /* Length of an IFD entry */ |
|
|
|
/* Discover byte order */ |
|
if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) |
|
is_motorola = FALSE; |
|
else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) |
|
is_motorola = TRUE; |
|
else |
|
return; |
|
|
|
/* Check Tag Mark */ |
|
if (is_motorola) { |
|
if (GETJOCTET(data[2]) != 0) return; |
|
if (GETJOCTET(data[3]) != 0x2A) return; |
|
} else { |
|
if (GETJOCTET(data[3]) != 0) return; |
|
if (GETJOCTET(data[2]) != 0x2A) return; |
|
} |
|
|
|
/* Get first IFD offset (offset to IFD0) */ |
|
if (is_motorola) { |
|
if (GETJOCTET(data[4]) != 0) return; |
|
if (GETJOCTET(data[5]) != 0) return; |
|
firstoffset = GETJOCTET(data[6]); |
|
firstoffset <<= 8; |
|
firstoffset += GETJOCTET(data[7]); |
|
} else { |
|
if (GETJOCTET(data[7]) != 0) return; |
|
if (GETJOCTET(data[6]) != 0) return; |
|
firstoffset = GETJOCTET(data[5]); |
|
firstoffset <<= 8; |
|
firstoffset += GETJOCTET(data[4]); |
|
} |
|
if (firstoffset > length - 2) return; /* check end of data segment */ |
|
|
|
/* Get the number of directory entries contained in this IFD */ |
|
if (is_motorola) { |
|
number_of_tags = GETJOCTET(data[firstoffset]); |
|
number_of_tags <<= 8; |
|
number_of_tags += GETJOCTET(data[firstoffset+1]); |
|
} else { |
|
number_of_tags = GETJOCTET(data[firstoffset+1]); |
|
number_of_tags <<= 8; |
|
number_of_tags += GETJOCTET(data[firstoffset]); |
|
} |
|
if (number_of_tags == 0) return; |
|
firstoffset += 2; |
|
|
|
/* Search for ExifSubIFD offset Tag in IFD0 */ |
|
for (;;) { |
|
if (firstoffset > length - 12) return; /* check end of data segment */ |
|
/* Get Tag number */ |
|
if (is_motorola) { |
|
tagnum = GETJOCTET(data[firstoffset]); |
|
tagnum <<= 8; |
|
tagnum += GETJOCTET(data[firstoffset+1]); |
|
} else { |
|
tagnum = GETJOCTET(data[firstoffset+1]); |
|
tagnum <<= 8; |
|
tagnum += GETJOCTET(data[firstoffset]); |
|
} |
|
if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ |
|
if (--number_of_tags == 0) return; |
|
firstoffset += 12; |
|
} |
|
|
|
/* Get the ExifSubIFD offset */ |
|
if (is_motorola) { |
|
if (GETJOCTET(data[firstoffset+8]) != 0) return; |
|
if (GETJOCTET(data[firstoffset+9]) != 0) return; |
|
offset = GETJOCTET(data[firstoffset+10]); |
|
offset <<= 8; |
|
offset += GETJOCTET(data[firstoffset+11]); |
|
} else { |
|
if (GETJOCTET(data[firstoffset+11]) != 0) return; |
|
if (GETJOCTET(data[firstoffset+10]) != 0) return; |
|
offset = GETJOCTET(data[firstoffset+9]); |
|
offset <<= 8; |
|
offset += GETJOCTET(data[firstoffset+8]); |
|
} |
|
if (offset > length - 2) return; /* check end of data segment */ |
|
|
|
/* Get the number of directory entries contained in this SubIFD */ |
|
if (is_motorola) { |
|
number_of_tags = GETJOCTET(data[offset]); |
|
number_of_tags <<= 8; |
|
number_of_tags += GETJOCTET(data[offset+1]); |
|
} else { |
|
number_of_tags = GETJOCTET(data[offset+1]); |
|
number_of_tags <<= 8; |
|
number_of_tags += GETJOCTET(data[offset]); |
|
} |
|
if (number_of_tags < 2) return; |
|
offset += 2; |
|
|
|
/* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ |
|
do { |
|
if (offset > length - 12) return; /* check end of data segment */ |
|
/* Get Tag number */ |
|
if (is_motorola) { |
|
tagnum = GETJOCTET(data[offset]); |
|
tagnum <<= 8; |
|
tagnum += GETJOCTET(data[offset+1]); |
|
} else { |
|
tagnum = GETJOCTET(data[offset+1]); |
|
tagnum <<= 8; |
|
tagnum += GETJOCTET(data[offset]); |
|
} |
|
if (tagnum == 0xA002 || tagnum == 0xA003) { |
|
if (tagnum == 0xA002) |
|
new_value = new_width; /* ExifImageWidth Tag */ |
|
else |
|
new_value = new_height; /* ExifImageHeight Tag */ |
|
if (is_motorola) { |
|
data[offset+2] = 0; /* Format = unsigned long (4 octets) */ |
|
data[offset+3] = 4; |
|
data[offset+4] = 0; /* Number Of Components = 1 */ |
|
data[offset+5] = 0; |
|
data[offset+6] = 0; |
|
data[offset+7] = 1; |
|
data[offset+8] = 0; |
|
data[offset+9] = 0; |
|
data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF); |
|
data[offset+11] = (JOCTET)(new_value & 0xFF); |
|
} else { |
|
data[offset+2] = 4; /* Format = unsigned long (4 octets) */ |
|
data[offset+3] = 0; |
|
data[offset+4] = 1; /* Number Of Components = 1 */ |
|
data[offset+5] = 0; |
|
data[offset+6] = 0; |
|
data[offset+7] = 0; |
|
data[offset+8] = (JOCTET)(new_value & 0xFF); |
|
data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF); |
|
data[offset+10] = 0; |
|
data[offset+11] = 0; |
|
} |
|
} |
|
offset += 12; |
|
} while (--number_of_tags); |
|
} |
|
|
|
|
|
/* Adjust output image parameters as needed. |
|
* |
|
* This must be called after jpeg_copy_critical_parameters() |
|
* and before jpeg_write_coefficients(). |
|
* |
|
* The return value is the set of virtual coefficient arrays to be written |
|
* (either the ones allocated by jtransform_request_workspace, or the |
|
* original source data arrays). The caller will need to pass this value |
|
* to jpeg_write_coefficients(). |
|
*/ |
|
|
|
GLOBAL(jvirt_barray_ptr *) |
|
jtransform_adjust_parameters (j_decompress_ptr srcinfo, |
|
j_compress_ptr dstinfo, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jpeg_transform_info *info) |
|
{ |
|
/* If force-to-grayscale is requested, adjust destination parameters */ |
|
if (info->force_grayscale) { |
|
/* First, ensure we have YCbCr or grayscale data, and that the source's |
|
* Y channel is full resolution. (No reasonable person would make Y |
|
* be less than full resolution, so actually coping with that case |
|
* isn't worth extra code space. But we check it to avoid crashing.) |
|
*/ |
|
if (((dstinfo->jpeg_color_space == JCS_YCbCr && |
|
dstinfo->num_components == 3) || |
|
(dstinfo->jpeg_color_space == JCS_GRAYSCALE && |
|
dstinfo->num_components == 1)) && |
|
srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && |
|
srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { |
|
/* We use jpeg_set_colorspace to make sure subsidiary settings get fixed |
|
* properly. Among other things, it sets the target h_samp_factor & |
|
* v_samp_factor to 1, which typically won't match the source. |
|
* We have to preserve the source's quantization table number, however. |
|
*/ |
|
int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; |
|
jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); |
|
dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; |
|
} else { |
|
/* Sorry, can't do it */ |
|
ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
} else if (info->num_components == 1) { |
|
/* For a single-component source, we force the destination sampling factors |
|
* to 1x1, with or without force_grayscale. This is useful because some |
|
* decoders choke on grayscale images with other sampling factors. |
|
*/ |
|
dstinfo->comp_info[0].h_samp_factor = 1; |
|
dstinfo->comp_info[0].v_samp_factor = 1; |
|
} |
|
|
|
/* Correct the destination's image dimensions as necessary |
|
* for crop and rotate/flip operations. |
|
*/ |
|
dstinfo->image_width = info->output_width; |
|
dstinfo->image_height = info->output_height; |
|
|
|
/* Transpose destination image parameters */ |
|
switch (info->transform) { |
|
case JXFORM_TRANSPOSE: |
|
case JXFORM_TRANSVERSE: |
|
case JXFORM_ROT_90: |
|
case JXFORM_ROT_270: |
|
transpose_critical_parameters(dstinfo); |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
/* Adjust Exif properties */ |
|
if (srcinfo->marker_list != NULL && |
|
srcinfo->marker_list->marker == JPEG_APP0+1 && |
|
srcinfo->marker_list->data_length >= 6 && |
|
GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && |
|
GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && |
|
GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && |
|
GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && |
|
GETJOCTET(srcinfo->marker_list->data[4]) == 0 && |
|
GETJOCTET(srcinfo->marker_list->data[5]) == 0) { |
|
/* Suppress output of JFIF marker */ |
|
dstinfo->write_JFIF_header = FALSE; |
|
/* Adjust Exif image parameters */ |
|
if (dstinfo->image_width != srcinfo->image_width || |
|
dstinfo->image_height != srcinfo->image_height) |
|
/* Align data segment to start of TIFF structure for parsing */ |
|
adjust_exif_parameters(srcinfo->marker_list->data + 6, |
|
srcinfo->marker_list->data_length - 6, |
|
dstinfo->image_width, dstinfo->image_height); |
|
} |
|
|
|
/* Return the appropriate output data set */ |
|
if (info->workspace_coef_arrays != NULL) |
|
return info->workspace_coef_arrays; |
|
return src_coef_arrays; |
|
} |
|
|
|
|
|
/* Execute the actual transformation, if any. |
|
* |
|
* This must be called *after* jpeg_write_coefficients, because it depends |
|
* on jpeg_write_coefficients to have computed subsidiary values such as |
|
* the per-component width and height fields in the destination object. |
|
* |
|
* Note that some transformations will modify the source data arrays! |
|
*/ |
|
|
|
GLOBAL(void) |
|
jtransform_execute_transform (j_decompress_ptr srcinfo, |
|
j_compress_ptr dstinfo, |
|
jvirt_barray_ptr *src_coef_arrays, |
|
jpeg_transform_info *info) |
|
{ |
|
jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; |
|
|
|
/* Note: conditions tested here should match those in switch statement |
|
* in jtransform_request_workspace() |
|
*/ |
|
switch (info->transform) { |
|
case JXFORM_NONE: |
|
if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
|
do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
break; |
|
case JXFORM_FLIP_H: |
|
if (info->y_crop_offset != 0) |
|
do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
else |
|
do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, |
|
src_coef_arrays); |
|
break; |
|
case JXFORM_FLIP_V: |
|
do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
break; |
|
case JXFORM_TRANSPOSE: |
|
do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
break; |
|
case JXFORM_TRANSVERSE: |
|
do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
break; |
|
case JXFORM_ROT_90: |
|
do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
break; |
|
case JXFORM_ROT_180: |
|
do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
break; |
|
case JXFORM_ROT_270: |
|
do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
|
src_coef_arrays, dst_coef_arrays); |
|
break; |
|
} |
|
} |
|
|
|
/* jtransform_perfect_transform |
|
* |
|
* Determine whether lossless transformation is perfectly |
|
* possible for a specified image and transformation. |
|
* |
|
* Inputs: |
|
* image_width, image_height: source image dimensions. |
|
* MCU_width, MCU_height: pixel dimensions of MCU. |
|
* transform: transformation identifier. |
|
* Parameter sources from initialized jpeg_struct |
|
* (after reading source header): |
|
* image_width = cinfo.image_width |
|
* image_height = cinfo.image_height |
|
* MCU_width = cinfo.max_h_samp_factor * DCTSIZE |
|
* MCU_height = cinfo.max_v_samp_factor * DCTSIZE |
|
* Result: |
|
* TRUE = perfect transformation possible |
|
* FALSE = perfect transformation not possible |
|
* (may use custom action then) |
|
*/ |
|
|
|
GLOBAL(boolean) |
|
jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, |
|
int MCU_width, int MCU_height, |
|
JXFORM_CODE transform) |
|
{ |
|
boolean result = TRUE; /* initialize TRUE */ |
|
|
|
switch (transform) { |
|
case JXFORM_FLIP_H: |
|
case JXFORM_ROT_270: |
|
if (image_width % (JDIMENSION) MCU_width) |
|
result = FALSE; |
|
break; |
|
case JXFORM_FLIP_V: |
|
case JXFORM_ROT_90: |
|
if (image_height % (JDIMENSION) MCU_height) |
|
result = FALSE; |
|
break; |
|
case JXFORM_TRANSVERSE: |
|
case JXFORM_ROT_180: |
|
if (image_width % (JDIMENSION) MCU_width) |
|
result = FALSE; |
|
if (image_height % (JDIMENSION) MCU_height) |
|
result = FALSE; |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
#endif /* TRANSFORMS_SUPPORTED */ |
|
|
|
|
|
/* Setup decompression object to save desired markers in memory. |
|
* This must be called before jpeg_read_header() to have the desired effect. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) |
|
{ |
|
#ifdef SAVE_MARKERS_SUPPORTED |
|
int m; |
|
|
|
/* Save comments except under NONE option */ |
|
if (option != JCOPYOPT_NONE) { |
|
jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); |
|
} |
|
/* Save all types of APPn markers iff ALL option */ |
|
if (option == JCOPYOPT_ALL) { |
|
for (m = 0; m < 16; m++) |
|
jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); |
|
} |
|
#endif /* SAVE_MARKERS_SUPPORTED */ |
|
} |
|
|
|
/* Copy markers saved in the given source object to the destination object. |
|
* This should be called just after jpeg_start_compress() or |
|
* jpeg_write_coefficients(). |
|
* Note that those routines will have written the SOI, and also the |
|
* JFIF APP0 or Adobe APP14 markers if selected. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
|
JCOPY_OPTION option) |
|
{ |
|
jpeg_saved_marker_ptr marker; |
|
|
|
/* In the current implementation, we don't actually need to examine the |
|
* option flag here; we just copy everything that got saved. |
|
* But to avoid confusion, we do not output JFIF and Adobe APP14 markers |
|
* if the encoder library already wrote one. |
|
*/ |
|
for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { |
|
if (dstinfo->write_JFIF_header && |
|
marker->marker == JPEG_APP0 && |
|
marker->data_length >= 5 && |
|
GETJOCTET(marker->data[0]) == 0x4A && |
|
GETJOCTET(marker->data[1]) == 0x46 && |
|
GETJOCTET(marker->data[2]) == 0x49 && |
|
GETJOCTET(marker->data[3]) == 0x46 && |
|
GETJOCTET(marker->data[4]) == 0) |
|
continue; /* reject duplicate JFIF */ |
|
if (dstinfo->write_Adobe_marker && |
|
marker->marker == JPEG_APP0+14 && |
|
marker->data_length >= 5 && |
|
GETJOCTET(marker->data[0]) == 0x41 && |
|
GETJOCTET(marker->data[1]) == 0x64 && |
|
GETJOCTET(marker->data[2]) == 0x6F && |
|
GETJOCTET(marker->data[3]) == 0x62 && |
|
GETJOCTET(marker->data[4]) == 0x65) |
|
continue; /* reject duplicate Adobe */ |
|
#ifdef NEED_FAR_POINTERS |
|
/* We could use jpeg_write_marker if the data weren't FAR... */ |
|
{ |
|
unsigned int i; |
|
jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); |
|
for (i = 0; i < marker->data_length; i++) |
|
jpeg_write_m_byte(dstinfo, marker->data[i]); |
|
} |
|
#else |
|
jpeg_write_marker(dstinfo, marker->marker, |
|
marker->data, marker->data_length); |
|
#endif |
|
} |
|
}
|
|
|