mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
270 lines
8.8 KiB
270 lines
8.8 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/photo.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "hdr_common.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
class AlignMTBImpl : public AlignMTB |
|
{ |
|
public: |
|
AlignMTBImpl(int _max_bits, int _exclude_range, bool _cut) : |
|
name("AlignMTB"), |
|
max_bits(_max_bits), |
|
exclude_range(_exclude_range), |
|
cut(_cut) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, std::vector<Mat>& dst, |
|
InputArray, InputArray) |
|
{ |
|
process(src, dst); |
|
} |
|
|
|
void process(InputArrayOfArrays _src, std::vector<Mat>& dst) |
|
{ |
|
std::vector<Mat> src; |
|
_src.getMatVector(src); |
|
|
|
checkImageDimensions(src); |
|
dst.resize(src.size()); |
|
|
|
size_t pivot = src.size() / 2; |
|
dst[pivot] = src[pivot]; |
|
Mat gray_base; |
|
cvtColor(src[pivot], gray_base, COLOR_RGB2GRAY); |
|
std::vector<Point> shifts; |
|
|
|
for(size_t i = 0; i < src.size(); i++) { |
|
if(i == pivot) { |
|
shifts.push_back(Point(0, 0)); |
|
continue; |
|
} |
|
Mat gray; |
|
cvtColor(src[i], gray, COLOR_RGB2GRAY); |
|
Point shift = calculateShift(gray_base, gray); |
|
shifts.push_back(shift); |
|
shiftMat(src[i], dst[i], shift); |
|
} |
|
if(cut) { |
|
Point max(0, 0), min(0, 0); |
|
for(size_t i = 0; i < shifts.size(); i++) { |
|
if(shifts[i].x > max.x) { |
|
max.x = shifts[i].x; |
|
} |
|
if(shifts[i].y > max.y) { |
|
max.y = shifts[i].y; |
|
} |
|
if(shifts[i].x < min.x) { |
|
min.x = shifts[i].x; |
|
} |
|
if(shifts[i].y < min.y) { |
|
min.y = shifts[i].y; |
|
} |
|
} |
|
Point size = dst[0].size(); |
|
for(size_t i = 0; i < dst.size(); i++) { |
|
dst[i] = dst[i](Rect(max, min + size)); |
|
} |
|
} |
|
} |
|
|
|
Point calculateShift(InputArray _img0, InputArray _img1) |
|
{ |
|
Mat img0 = _img0.getMat(); |
|
Mat img1 = _img1.getMat(); |
|
CV_Assert(img0.channels() == 1 && img0.type() == img1.type()); |
|
CV_Assert(img0.size() == img0.size()); |
|
|
|
int maxlevel = static_cast<int>(log((double)max(img0.rows, img0.cols)) / log(2.0)) - 1; |
|
maxlevel = min(maxlevel, max_bits - 1); |
|
|
|
std::vector<Mat> pyr0; |
|
std::vector<Mat> pyr1; |
|
buildPyr(img0, pyr0, maxlevel); |
|
buildPyr(img1, pyr1, maxlevel); |
|
|
|
Point shift(0, 0); |
|
for(int level = maxlevel; level >= 0; level--) { |
|
|
|
shift *= 2; |
|
Mat tb1, tb2, eb1, eb2; |
|
computeBitmaps(pyr0[level], tb1, eb1); |
|
computeBitmaps(pyr1[level], tb2, eb2); |
|
|
|
int min_err = (int)pyr0[level].total(); |
|
Point new_shift(shift); |
|
for(int i = -1; i <= 1; i++) { |
|
for(int j = -1; j <= 1; j++) { |
|
Point test_shift = shift + Point(i, j); |
|
Mat shifted_tb2, shifted_eb2, diff; |
|
shiftMat(tb2, shifted_tb2, test_shift); |
|
shiftMat(eb2, shifted_eb2, test_shift); |
|
bitwise_xor(tb1, shifted_tb2, diff); |
|
bitwise_and(diff, eb1, diff); |
|
bitwise_and(diff, shifted_eb2, diff); |
|
int err = countNonZero(diff); |
|
if(err < min_err) { |
|
new_shift = test_shift; |
|
min_err = err; |
|
} |
|
} |
|
} |
|
shift = new_shift; |
|
} |
|
return shift; |
|
} |
|
|
|
void shiftMat(InputArray _src, OutputArray _dst, const Point shift) |
|
{ |
|
Mat src = _src.getMat(); |
|
_dst.create(src.size(), src.type()); |
|
Mat dst = _dst.getMat(); |
|
|
|
Mat res = Mat::zeros(src.size(), src.type()); |
|
int width = src.cols - abs(shift.x); |
|
int height = src.rows - abs(shift.y); |
|
Rect dst_rect(max(shift.x, 0), max(shift.y, 0), width, height); |
|
Rect src_rect(max(-shift.x, 0), max(-shift.y, 0), width, height); |
|
src(src_rect).copyTo(res(dst_rect)); |
|
res.copyTo(dst); |
|
} |
|
|
|
int getMaxBits() const { return max_bits; } |
|
void setMaxBits(int val) { max_bits = val; } |
|
|
|
int getExcludeRange() const { return exclude_range; } |
|
void setExcludeRange(int val) { exclude_range = val; } |
|
|
|
bool getCut() const { return cut; } |
|
void setCut(bool val) { cut = val; } |
|
|
|
void write(FileStorage& fs) const |
|
{ |
|
fs << "name" << name |
|
<< "max_bits" << max_bits |
|
<< "exclude_range" << exclude_range |
|
<< "cut" << static_cast<int>(cut); |
|
} |
|
|
|
void read(const FileNode& fn) |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
max_bits = fn["max_bits"]; |
|
exclude_range = fn["exclude_range"]; |
|
int cut_val = fn["cut"]; |
|
cut = (cut_val != 0); |
|
} |
|
|
|
void computeBitmaps(InputArray _img, OutputArray _tb, OutputArray _eb) |
|
{ |
|
Mat img = _img.getMat(); |
|
_tb.create(img.size(), CV_8U); |
|
_eb.create(img.size(), CV_8U); |
|
Mat tb = _tb.getMat(), eb = _eb.getMat(); |
|
int median = getMedian(img); |
|
compare(img, median, tb, CMP_GT); |
|
compare(abs(img - median), exclude_range, eb, CMP_GT); |
|
} |
|
|
|
protected: |
|
String name; |
|
int max_bits, exclude_range; |
|
bool cut; |
|
|
|
void downsample(Mat& src, Mat& dst) |
|
{ |
|
dst = Mat(src.rows / 2, src.cols / 2, CV_8UC1); |
|
|
|
int offset = src.cols * 2; |
|
uchar *src_ptr = src.ptr(); |
|
uchar *dst_ptr = dst.ptr(); |
|
for(int y = 0; y < dst.rows; y ++) { |
|
uchar *ptr = src_ptr; |
|
for(int x = 0; x < dst.cols; x++) { |
|
dst_ptr[0] = ptr[0]; |
|
dst_ptr++; |
|
ptr += 2; |
|
} |
|
src_ptr += offset; |
|
} |
|
} |
|
|
|
void buildPyr(Mat& img, std::vector<Mat>& pyr, int maxlevel) |
|
{ |
|
pyr.resize(maxlevel + 1); |
|
pyr[0] = img.clone(); |
|
for(int level = 0; level < maxlevel; level++) { |
|
downsample(pyr[level], pyr[level + 1]); |
|
} |
|
} |
|
|
|
int getMedian(Mat& img) |
|
{ |
|
int channels = 0; |
|
Mat hist; |
|
int hist_size = LDR_SIZE; |
|
float range[] = {0, LDR_SIZE} ; |
|
const float* ranges[] = {range}; |
|
calcHist(&img, 1, &channels, Mat(), hist, 1, &hist_size, ranges); |
|
float *ptr = hist.ptr<float>(); |
|
int median = 0, sum = 0; |
|
int thresh = (int)img.total() / 2; |
|
while(sum < thresh && median < LDR_SIZE) { |
|
sum += static_cast<int>(ptr[median]); |
|
median++; |
|
} |
|
return median; |
|
} |
|
}; |
|
|
|
Ptr<AlignMTB> createAlignMTB(int max_bits, int exclude_range, bool cut) |
|
{ |
|
return makePtr<AlignMTBImpl>(max_bits, exclude_range, cut); |
|
} |
|
|
|
}
|
|
|