mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
308 lines
13 KiB
308 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// (3-clause BSD License) |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * Neither the names of the copyright holders nor the names of the contributors |
|
// may be used to endorse or promote products derived from this software |
|
// without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall copyright holders or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <algorithm> |
|
#include <opencv2/core/ocl.hpp> |
|
#include <opencv2/ts/ocl_test.hpp> |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/") + filename; |
|
} |
|
|
|
TEST(Test_Darknet, read_tiny_yolo_voc) |
|
{ |
|
Net net = readNetFromDarknet(_tf("tiny-yolo-voc.cfg")); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
TEST(Test_Darknet, read_yolo_voc) |
|
{ |
|
Net net = readNetFromDarknet(_tf("yolo-voc.cfg")); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
OCL_TEST(Reproducibility_TinyYoloVoc, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string cfg = findDataFile("dnn/tiny-yolo-voc.cfg", false); |
|
const string model = findDataFile("dnn/tiny-yolo-voc.weights", false); |
|
net = readNetFromDarknet(cfg, model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format |
|
Mat sample = imread(_tf("dog416.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
Size inputSize(416, 416); |
|
|
|
if (sample.size() != inputSize) |
|
resize(sample, sample, inputSize); |
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
Mat out = net.forward("detection_out"); |
|
|
|
Mat detection; |
|
const float confidenceThreshold = 0.24; |
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
const int probability_index = 5; |
|
const int probability_size = out.cols - probability_index; |
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
if (confidence > confidenceThreshold) |
|
detection.push_back(out.row(i)); |
|
} |
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/tiny-yolo-voc.cfg ./tiny-yolo-voc.weights -thresh 0.24 ./dog416.png |
|
// There are 2 objects (6-car, 11-dog) with 25 values for each: |
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } |
|
float ref_array[] = { |
|
0.736762F, 0.239551F, 0.315440F, 0.160779F, 0.761977F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.761967F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
0.287486F, 0.653731F, 0.315579F, 0.534527F, 0.782737F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.780595F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
}; |
|
|
|
const int number_of_objects = 2; |
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
normAssert(ref, detection); |
|
} |
|
|
|
TEST(Reproducibility_TinyYoloVoc, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string cfg = findDataFile("dnn/tiny-yolo-voc.cfg", false); |
|
const string model = findDataFile("dnn/tiny-yolo-voc.weights", false); |
|
net = readNetFromDarknet(cfg, model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format |
|
Mat sample = imread(_tf("dog416.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
Size inputSize(416, 416); |
|
|
|
if (sample.size() != inputSize) |
|
resize(sample, sample, inputSize); |
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
Mat out = net.forward("detection_out"); |
|
|
|
Mat detection; |
|
const float confidenceThreshold = 0.24; |
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
const int probability_index = 5; |
|
const int probability_size = out.cols - probability_index; |
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
if (confidence > confidenceThreshold) |
|
detection.push_back(out.row(i)); |
|
} |
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/tiny-yolo-voc.cfg ./tiny-yolo-voc.weights -thresh 0.24 ./dog416.png |
|
// There are 2 objects (6-car, 11-dog) with 25 values for each: |
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } |
|
float ref_array[] = { |
|
0.736762F, 0.239551F, 0.315440F, 0.160779F, 0.761977F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.761967F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
0.287486F, 0.653731F, 0.315579F, 0.534527F, 0.782737F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.780595F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
}; |
|
|
|
const int number_of_objects = 2; |
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
normAssert(ref, detection); |
|
} |
|
|
|
OCL_TEST(Reproducibility_YoloVoc, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string cfg = findDataFile("dnn/yolo-voc.cfg", false); |
|
const string model = findDataFile("dnn/yolo-voc.weights", false); |
|
net = readNetFromDarknet(cfg, model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format |
|
Mat sample = imread(_tf("dog416.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
Size inputSize(416, 416); |
|
|
|
if (sample.size() != inputSize) |
|
resize(sample, sample, inputSize); |
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
Mat out = net.forward("detection_out"); |
|
|
|
Mat detection; |
|
const float confidenceThreshold = 0.24; |
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
const int probability_index = 5; |
|
const int probability_size = out.cols - probability_index; |
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
if (confidence > confidenceThreshold) |
|
detection.push_back(out.row(i)); |
|
} |
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/yolo-voc.cfg ./yolo-voc.weights -thresh 0.24 ./dog416.png |
|
// There are 3 objects (6-car, 1-bicycle, 11-dog) with 25 values for each: |
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } |
|
float ref_array[] = { |
|
0.740161F, 0.214100F, 0.325575F, 0.173418F, 0.750769F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.750469F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
0.501618F, 0.504757F, 0.461713F, 0.481310F, 0.783550F, 0.000000F, 0.780879F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
0.279968F, 0.638651F, 0.282737F, 0.600284F, 0.901864F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.901615F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
}; |
|
|
|
const int number_of_objects = 3; |
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
normAssert(ref, detection); |
|
} |
|
|
|
TEST(Reproducibility_YoloVoc, Accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string cfg = findDataFile("dnn/yolo-voc.cfg", false); |
|
const string model = findDataFile("dnn/yolo-voc.weights", false); |
|
net = readNetFromDarknet(cfg, model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
// dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format |
|
Mat sample = imread(_tf("dog416.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
Size inputSize(416, 416); |
|
|
|
if (sample.size() != inputSize) |
|
resize(sample, sample, inputSize); |
|
|
|
net.setInput(blobFromImage(sample, 1 / 255.F), "data"); |
|
Mat out = net.forward("detection_out"); |
|
|
|
Mat detection; |
|
const float confidenceThreshold = 0.24; |
|
|
|
for (int i = 0; i < out.rows; i++) { |
|
const int probability_index = 5; |
|
const int probability_size = out.cols - probability_index; |
|
float *prob_array_ptr = &out.at<float>(i, probability_index); |
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
float confidence = out.at<float>(i, (int)objectClass + probability_index); |
|
|
|
if (confidence > confidenceThreshold) |
|
detection.push_back(out.row(i)); |
|
} |
|
|
|
// obtained by: ./darknet detector test ./cfg/voc.data ./cfg/yolo-voc.cfg ./yolo-voc.weights -thresh 0.24 ./dog416.png |
|
// There are 3 objects (6-car, 1-bicycle, 11-dog) with 25 values for each: |
|
// { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } |
|
float ref_array[] = { |
|
0.740161F, 0.214100F, 0.325575F, 0.173418F, 0.750769F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.750469F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
0.501618F, 0.504757F, 0.461713F, 0.481310F, 0.783550F, 0.000000F, 0.780879F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
|
|
0.279968F, 0.638651F, 0.282737F, 0.600284F, 0.901864F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.901615F, |
|
0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F |
|
}; |
|
|
|
const int number_of_objects = 3; |
|
Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); |
|
|
|
normAssert(ref, detection); |
|
} |
|
|
|
}
|
|
|