Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

154 lines
5.9 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CUDABGSEGM_HPP__
#define __OPENCV_CUDABGSEGM_HPP__
#ifndef __cplusplus
# error cudabgsegm.hpp header must be compiled as C++
#endif
#include "opencv2/core/cuda.hpp"
#include "opencv2/video/background_segm.hpp"
/**
@addtogroup cuda
@{
@defgroup cudabgsegm Background Segmentation
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudabgsegm
//! @{
////////////////////////////////////////////////////
// MOG
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class discriminates between foreground and background pixels by building and maintaining a model
of the background. Any pixel which does not fit this model is then deemed to be foreground. The
class implements algorithm described in @cite MOG2001 .
@sa BackgroundSubtractorMOG
@note
- An example on gaussian mixture based background/foreground segmantation can be found at
opencv_source_code/samples/gpu/bgfg_segm.cpp
*/
class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractor
{
public:
using cv::BackgroundSubtractor::apply;
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
using cv::BackgroundSubtractor::getBackgroundImage;
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
virtual int getHistory() const = 0;
virtual void setHistory(int nframes) = 0;
virtual int getNMixtures() const = 0;
virtual void setNMixtures(int nmix) = 0;
virtual double getBackgroundRatio() const = 0;
virtual void setBackgroundRatio(double backgroundRatio) = 0;
virtual double getNoiseSigma() const = 0;
virtual void setNoiseSigma(double noiseSigma) = 0;
};
/** @brief Creates mixture-of-gaussian background subtractor
@param history Length of the history.
@param nmixtures Number of Gaussian mixtures.
@param backgroundRatio Background ratio.
@param noiseSigma Noise strength (standard deviation of the brightness or each color channel). 0
means some automatic value.
*/
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG>
createBackgroundSubtractorMOG(int history = 200, int nmixtures = 5,
double backgroundRatio = 0.7, double noiseSigma = 0);
////////////////////////////////////////////////////
// MOG2
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class discriminates between foreground and background pixels by building and maintaining a model
of the background. Any pixel which does not fit this model is then deemed to be foreground. The
class implements algorithm described in @cite Zivkovic2004 .
@sa BackgroundSubtractorMOG2
*/
class CV_EXPORTS BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2
{
public:
using cv::BackgroundSubtractorMOG2::apply;
using cv::BackgroundSubtractorMOG2::getBackgroundImage;
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
};
/** @brief Creates MOG2 Background Subtractor
@param history Length of the history.
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
*/
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG2>
createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16,
bool detectShadows = true);
//! @}
}} // namespace cv { namespace cuda {
#endif /* __OPENCV_CUDABGSEGM_HPP__ */