mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
9.2 KiB
318 lines
9.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using cv::ml::SVMSGD; |
|
using cv::ml::TrainData; |
|
|
|
class CV_SVMSGDTrainTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
enum TrainDataType |
|
{ |
|
UNIFORM_SAME_SCALE, |
|
UNIFORM_DIFFERENT_SCALES |
|
}; |
|
|
|
CV_SVMSGDTrainTest(const Mat &_weights, float shift, TrainDataType type, double precision = 0.01); |
|
private: |
|
virtual void run( int start_from ); |
|
static float decisionFunction(const Mat &sample, const Mat &weights, float shift); |
|
void makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses); |
|
void generateSameBorders(int featureCount); |
|
void generateDifferentBorders(int featureCount); |
|
|
|
TrainDataType type; |
|
double precision; |
|
std::vector<std::pair<float,float> > borders; |
|
cv::Ptr<TrainData> data; |
|
cv::Mat testSamples; |
|
cv::Mat testResponses; |
|
static const int TEST_VALUE_LIMIT = 500; |
|
}; |
|
|
|
void CV_SVMSGDTrainTest::generateSameBorders(int featureCount) |
|
{ |
|
float lowerLimit = -TEST_VALUE_LIMIT; |
|
float upperLimit = TEST_VALUE_LIMIT; |
|
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
{ |
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit)); |
|
} |
|
} |
|
|
|
void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount) |
|
{ |
|
float lowerLimit = -TEST_VALUE_LIMIT; |
|
float upperLimit = TEST_VALUE_LIMIT; |
|
cv::RNG rng(0); |
|
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
{ |
|
int crit = rng.uniform(0, 2); |
|
|
|
if (crit > 0) |
|
{ |
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit)); |
|
} |
|
else |
|
{ |
|
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000)); |
|
} |
|
} |
|
} |
|
|
|
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift) |
|
{ |
|
return static_cast<float>(sample.dot(weights)) + shift; |
|
} |
|
|
|
void CV_SVMSGDTrainTest::makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses) |
|
{ |
|
int featureCount = weights.cols; |
|
|
|
samples.create(samplesCount, featureCount, CV_32FC1); |
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) |
|
{ |
|
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second); |
|
} |
|
|
|
responses.create(samplesCount, 1, CV_32FC1); |
|
|
|
for (int i = 0 ; i < samplesCount; i++) |
|
{ |
|
responses.at<float>(i) = decisionFunction(samples.row(i), weights, shift) > 0 ? 1.f : -1.f; |
|
} |
|
|
|
} |
|
|
|
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision) |
|
{ |
|
type = _type; |
|
precision = _precision; |
|
|
|
int featureCount = weights.cols; |
|
|
|
switch(type) |
|
{ |
|
case UNIFORM_SAME_SCALE: |
|
generateSameBorders(featureCount); |
|
break; |
|
case UNIFORM_DIFFERENT_SCALES: |
|
generateDifferentBorders(featureCount); |
|
break; |
|
default: |
|
CV_Error(CV_StsBadArg, "Unknown train data type"); |
|
} |
|
|
|
RNG rng(0); |
|
|
|
Mat trainSamples; |
|
Mat trainResponses; |
|
int trainSamplesCount = 10000; |
|
makeData(trainSamplesCount, weights, shift, rng, trainSamples, trainResponses); |
|
data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses); |
|
|
|
int testSamplesCount = 100000; |
|
makeData(testSamplesCount, weights, shift, rng, testSamples, testResponses); |
|
} |
|
|
|
void CV_SVMSGDTrainTest::run( int /*start_from*/ ) |
|
{ |
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create(); |
|
|
|
svmsgd->train(data); |
|
|
|
Mat responses; |
|
|
|
svmsgd->predict(testSamples, responses); |
|
|
|
int errCount = 0; |
|
int testSamplesCount = testSamples.rows; |
|
|
|
CV_Assert((responses.type() == CV_32FC1) && (testResponses.type() == CV_32FC1)); |
|
for (int i = 0; i < testSamplesCount; i++) |
|
{ |
|
if (responses.at<float>(i) * testResponses.at<float>(i) < 0) |
|
errCount++; |
|
} |
|
|
|
float err = (float)errCount / testSamplesCount; |
|
|
|
if ( err > precision ) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
} |
|
|
|
void makeWeightsAndShift(int featureCount, Mat &weights, float &shift) |
|
{ |
|
weights.create(1, featureCount, CV_32FC1); |
|
cv::RNG rng(0); |
|
double lowerLimit = -1; |
|
double upperLimit = 1; |
|
|
|
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit); |
|
shift = static_cast<float>(rng.uniform(-featureCount, featureCount)); |
|
} |
|
|
|
|
|
TEST(ML_SVMSGD, trainSameScale2) |
|
{ |
|
int featureCount = 2; |
|
|
|
Mat weights; |
|
|
|
float shift = 0; |
|
makeWeightsAndShift(featureCount, weights, shift); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, trainSameScale5) |
|
{ |
|
int featureCount = 5; |
|
|
|
Mat weights; |
|
|
|
float shift = 0; |
|
makeWeightsAndShift(featureCount, weights, shift); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, trainSameScale100) |
|
{ |
|
int featureCount = 100; |
|
|
|
Mat weights; |
|
|
|
float shift = 0; |
|
makeWeightsAndShift(featureCount, weights, shift); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE, 0.02); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, trainDifferentScales2) |
|
{ |
|
int featureCount = 2; |
|
|
|
Mat weights; |
|
|
|
float shift = 0; |
|
makeWeightsAndShift(featureCount, weights, shift); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, trainDifferentScales5) |
|
{ |
|
int featureCount = 5; |
|
|
|
Mat weights; |
|
|
|
float shift = 0; |
|
makeWeightsAndShift(featureCount, weights, shift); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, trainDifferentScales100) |
|
{ |
|
int featureCount = 100; |
|
|
|
Mat weights; |
|
|
|
float shift = 0; |
|
makeWeightsAndShift(featureCount, weights, shift); |
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(ML_SVMSGD, twoPoints) |
|
{ |
|
Mat samples(2, 2, CV_32FC1); |
|
samples.at<float>(0,0) = 0; |
|
samples.at<float>(0,1) = 0; |
|
samples.at<float>(1,0) = 1000; |
|
samples.at<float>(1,1) = 1; |
|
|
|
Mat responses(2, 1, CV_32FC1); |
|
responses.at<float>(0) = -1; |
|
responses.at<float>(1) = 1; |
|
|
|
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses); |
|
|
|
Mat realWeights(1, 2, CV_32FC1); |
|
realWeights.at<float>(0) = 1000; |
|
realWeights.at<float>(1) = 1; |
|
|
|
float realShift = -500000.5; |
|
|
|
float normRealWeights = static_cast<float>(cv::norm(realWeights)); // TODO cvtest |
|
realWeights /= normRealWeights; |
|
realShift /= normRealWeights; |
|
|
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create(); |
|
svmsgd->setOptimalParameters(); |
|
svmsgd->train( trainData ); |
|
|
|
Mat foundWeights = svmsgd->getWeights(); |
|
float foundShift = svmsgd->getShift(); |
|
|
|
float normFoundWeights = static_cast<float>(cv::norm(foundWeights)); // TODO cvtest |
|
foundWeights /= normFoundWeights; |
|
foundShift /= normFoundWeights; |
|
EXPECT_LE(cv::norm(Mat(foundWeights - realWeights)), 0.001); // TODO cvtest |
|
EXPECT_LE(std::abs((foundShift - realShift) / realShift), 0.05); |
|
} |
|
|
|
}} // namespace
|
|
|