mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1331 lines
42 KiB
1331 lines
42 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
void __wrap_printf_func(const char* fmt, ...) |
|
{ |
|
va_list args; |
|
va_start(args, fmt); |
|
char buffer[256]; |
|
vsprintf (buffer, fmt, args); |
|
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, buffer); |
|
va_end(args); |
|
} |
|
|
|
#define PRINT_TO_LOG __wrap_printf_func |
|
|
|
#define SHOW_IMAGE |
|
#undef SHOW_IMAGE |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// ImageWarpBaseTest |
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
class CV_ImageWarpBaseTest : |
|
public cvtest::BaseTest |
|
{ |
|
public: |
|
enum { cell_size = 10 }; |
|
|
|
CV_ImageWarpBaseTest(); |
|
virtual ~CV_ImageWarpBaseTest(); |
|
|
|
virtual void run(int); |
|
protected: |
|
virtual void generate_test_data(); |
|
|
|
virtual void run_func() = 0; |
|
virtual void run_reference_func() = 0; |
|
virtual float get_success_error_level(int _interpolation, int _depth) const; |
|
virtual void validate_results() const; |
|
virtual void prepare_test_data_for_reference_func(); |
|
|
|
Size randSize(RNG& rng) const; |
|
|
|
String interpolation_to_string(int inter_type) const; |
|
|
|
int interpolation; |
|
Mat src; |
|
Mat dst; |
|
Mat reference_dst; |
|
}; |
|
|
|
CV_ImageWarpBaseTest::CV_ImageWarpBaseTest() : |
|
BaseTest(), interpolation(-1), |
|
src(), dst(), reference_dst() |
|
{ |
|
test_case_count = 40; |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
CV_ImageWarpBaseTest::~CV_ImageWarpBaseTest() |
|
{ |
|
} |
|
|
|
String CV_ImageWarpBaseTest::interpolation_to_string(int inter) const |
|
{ |
|
bool inverse = (inter & WARP_INVERSE_MAP) != 0; |
|
inter &= ~WARP_INVERSE_MAP; |
|
String str; |
|
|
|
if (inter == INTER_NEAREST) |
|
str = "INTER_NEAREST"; |
|
else if (inter == INTER_LINEAR) |
|
str = "INTER_LINEAR"; |
|
else if (inter == INTER_LINEAR_EXACT) |
|
str = "INTER_LINEAR_EXACT"; |
|
else if (inter == INTER_AREA) |
|
str = "INTER_AREA"; |
|
else if (inter == INTER_CUBIC) |
|
str = "INTER_CUBIC"; |
|
else if (inter == INTER_LANCZOS4) |
|
str = "INTER_LANCZOS4"; |
|
else if (inter == INTER_LANCZOS4 + 1) |
|
str = "INTER_AREA_FAST"; |
|
|
|
if (inverse) |
|
str += " | WARP_INVERSE_MAP"; |
|
|
|
return str.empty() ? "Unsupported/Unknown interpolation type" : str; |
|
} |
|
|
|
Size CV_ImageWarpBaseTest::randSize(RNG& rng) const |
|
{ |
|
Size size; |
|
size.width = static_cast<int>(std::exp(rng.uniform(1.0f, 7.0f))); |
|
size.height = static_cast<int>(std::exp(rng.uniform(1.0f, 7.0f))); |
|
|
|
return size; |
|
} |
|
|
|
void CV_ImageWarpBaseTest::generate_test_data() |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
|
|
// generating the src matrix structure |
|
Size ssize = randSize(rng), dsize; |
|
|
|
int depth = rng.uniform(0, CV_64F); |
|
while (depth == CV_8S || depth == CV_32S) |
|
depth = rng.uniform(0, CV_64F); |
|
|
|
int cn = rng.uniform(1, 4); |
|
while (cn == 2) |
|
cn = rng.uniform(1, 4); |
|
|
|
src.create(ssize, CV_MAKE_TYPE(depth, cn)); |
|
|
|
// generating the src matrix |
|
int x, y; |
|
if (cvtest::randInt(rng) % 2) |
|
{ |
|
for (y = 0; y < ssize.height; y += cell_size) |
|
for (x = 0; x < ssize.width; x += cell_size) |
|
rectangle(src, Point(x, y), Point(x + std::min<int>(cell_size, ssize.width - x), y + |
|
std::min<int>(cell_size, ssize.height - y)), Scalar::all((x + y) % 2 ? 255: 0), CV_FILLED); |
|
} |
|
else |
|
{ |
|
src = Scalar::all(255); |
|
for (y = cell_size; y < src.rows; y += cell_size) |
|
line(src, Point2i(0, y), Point2i(src.cols, y), Scalar::all(0), 1); |
|
for (x = cell_size; x < src.cols; x += cell_size) |
|
line(src, Point2i(x, 0), Point2i(x, src.rows), Scalar::all(0), 1); |
|
} |
|
|
|
// generating an interpolation type |
|
interpolation = rng.uniform(0, CV_INTER_LANCZOS4 + 1); |
|
|
|
// generating the dst matrix structure |
|
double scale_x, scale_y; |
|
if (interpolation == INTER_AREA) |
|
{ |
|
bool area_fast = rng.uniform(0., 1.) > 0.5; |
|
if (area_fast) |
|
{ |
|
scale_x = rng.uniform(2, 5); |
|
scale_y = rng.uniform(2, 5); |
|
} |
|
else |
|
{ |
|
scale_x = rng.uniform(1.0, 3.0); |
|
scale_y = rng.uniform(1.0, 3.0); |
|
} |
|
} |
|
else |
|
{ |
|
scale_x = rng.uniform(0.4, 4.0); |
|
scale_y = rng.uniform(0.4, 4.0); |
|
} |
|
CV_Assert(scale_x > 0.0f && scale_y > 0.0f); |
|
|
|
dsize.width = saturate_cast<int>((ssize.width + scale_x - 1) / scale_x); |
|
dsize.height = saturate_cast<int>((ssize.height + scale_y - 1) / scale_y); |
|
|
|
dst = Mat::zeros(dsize, src.type()); |
|
reference_dst = Mat::zeros(dst.size(), CV_MAKE_TYPE(CV_32F, dst.channels())); |
|
|
|
scale_x = src.cols / static_cast<double>(dst.cols); |
|
scale_y = src.rows / static_cast<double>(dst.rows); |
|
|
|
if (interpolation == INTER_AREA && (scale_x < 1.0 || scale_y < 1.0)) |
|
interpolation = INTER_LINEAR; |
|
} |
|
|
|
void CV_ImageWarpBaseTest::run(int) |
|
{ |
|
for (int i = 0; i < test_case_count; ++i) |
|
{ |
|
generate_test_data(); |
|
run_func(); |
|
run_reference_func(); |
|
if (ts->get_err_code() < 0) |
|
break; |
|
validate_results(); |
|
if (ts->get_err_code() < 0) |
|
break; |
|
ts->update_context(this, i, true); |
|
} |
|
ts->set_gtest_status(); |
|
} |
|
|
|
float CV_ImageWarpBaseTest::get_success_error_level(int _interpolation, int) const |
|
{ |
|
if (_interpolation == INTER_CUBIC) |
|
return 1.0f; |
|
else if (_interpolation == INTER_LANCZOS4) |
|
return 1.0f; |
|
else if (_interpolation == INTER_NEAREST) |
|
return 1.0f; |
|
else if (_interpolation == INTER_AREA) |
|
return 2.0f; |
|
else |
|
return 1.0f; |
|
} |
|
|
|
void CV_ImageWarpBaseTest::validate_results() const |
|
{ |
|
Mat _dst; |
|
dst.convertTo(_dst, reference_dst.depth()); |
|
|
|
Size dsize = dst.size(), ssize = src.size(); |
|
int cn = _dst.channels(); |
|
dsize.width *= cn; |
|
float t = get_success_error_level(interpolation & INTER_MAX, dst.depth()); |
|
|
|
for (int dy = 0; dy < dsize.height; ++dy) |
|
{ |
|
const float* rD = reference_dst.ptr<float>(dy); |
|
const float* D = _dst.ptr<float>(dy); |
|
|
|
for (int dx = 0; dx < dsize.width; ++dx) |
|
if (fabs(rD[dx] - D[dx]) > t && |
|
// fabs(rD[dx] - D[dx]) < 250.0f && |
|
rD[dx] <= 255.0f && D[dx] <= 255.0f && rD[dx] >= 0.0f && D[dx] >= 0.0f) |
|
{ |
|
PRINT_TO_LOG("\nNorm of the difference: %lf\n", cvtest::norm(reference_dst, _dst, NORM_INF)); |
|
PRINT_TO_LOG("Error in (dx, dy): (%d, %d)\n", dx / cn + 1, dy + 1); |
|
PRINT_TO_LOG("Tuple (rD, D): (%f, %f)\n", rD[dx], D[dx]); |
|
PRINT_TO_LOG("Dsize: (%d, %d)\n", dsize.width / cn, dsize.height); |
|
PRINT_TO_LOG("Ssize: (%d, %d)\n", src.cols, src.rows); |
|
|
|
double scale_x = static_cast<double>(ssize.width) / dsize.width; |
|
double scale_y = static_cast<double>(ssize.height) / dsize.height; |
|
bool area_fast = interpolation == INTER_AREA && |
|
fabs(scale_x - cvRound(scale_x)) < FLT_EPSILON && |
|
fabs(scale_y - cvRound(scale_y)) < FLT_EPSILON; |
|
if (area_fast) |
|
{ |
|
scale_y = cvRound(scale_y); |
|
scale_x = cvRound(scale_x); |
|
} |
|
|
|
PRINT_TO_LOG("Interpolation: %s\n", interpolation_to_string(area_fast ? INTER_LANCZOS4 + 1 : interpolation).c_str()); |
|
PRINT_TO_LOG("Scale (x, y): (%lf, %lf)\n", scale_x, scale_y); |
|
PRINT_TO_LOG("Elemsize: %d\n", src.elemSize1()); |
|
PRINT_TO_LOG("Channels: %d\n", cn); |
|
|
|
#ifdef SHOW_IMAGE |
|
const std::string w1("OpenCV impl (run func)"), w2("Reference func"), w3("Src image"), w4("Diff"); |
|
namedWindow(w1, CV_WINDOW_KEEPRATIO); |
|
namedWindow(w2, CV_WINDOW_KEEPRATIO); |
|
namedWindow(w3, CV_WINDOW_KEEPRATIO); |
|
namedWindow(w4, CV_WINDOW_KEEPRATIO); |
|
|
|
Mat diff; |
|
absdiff(reference_dst, _dst, diff); |
|
|
|
imshow(w1, dst); |
|
imshow(w2, reference_dst); |
|
imshow(w3, src); |
|
imshow(w4, diff); |
|
|
|
waitKey(); |
|
#endif |
|
|
|
const int radius = 3; |
|
int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height); |
|
int cmin = MAX(dx / cn - radius, 0), cmax = MIN(dx / cn + radius, dsize.width); |
|
|
|
std::cout << "opencv result:\n" << dst(Range(rmin, rmax), Range(cmin, cmax)) << std::endl; |
|
std::cout << "reference result:\n" << reference_dst(Range(rmin, rmax), Range(cmin, cmax)) << std::endl; |
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
void CV_ImageWarpBaseTest::prepare_test_data_for_reference_func() |
|
{ |
|
if (src.depth() != CV_32F) |
|
{ |
|
Mat tmp; |
|
src.convertTo(tmp, CV_32F); |
|
src = tmp; |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// Resize |
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
class CV_Resize_Test : |
|
public CV_ImageWarpBaseTest |
|
{ |
|
public: |
|
CV_Resize_Test(); |
|
virtual ~CV_Resize_Test(); |
|
|
|
protected: |
|
virtual void generate_test_data(); |
|
|
|
virtual void run_func(); |
|
virtual void run_reference_func(); |
|
|
|
private: |
|
double scale_x; |
|
double scale_y; |
|
bool area_fast; |
|
|
|
void resize_generic(); |
|
void resize_area(); |
|
double getWeight(double a, double b, int x); |
|
|
|
typedef std::vector<std::pair<int, double> > dim; |
|
void generate_buffer(double scale, dim& _dim); |
|
void resize_1d(const Mat& _src, Mat& _dst, int dy, const dim& _dim); |
|
}; |
|
|
|
CV_Resize_Test::CV_Resize_Test() : |
|
CV_ImageWarpBaseTest(), scale_x(), |
|
scale_y(), area_fast(false) |
|
{ |
|
} |
|
|
|
CV_Resize_Test::~CV_Resize_Test() |
|
{ |
|
} |
|
|
|
namespace |
|
{ |
|
void interpolateLinear(float x, float* coeffs) |
|
{ |
|
coeffs[0] = 1.f - x; |
|
coeffs[1] = x; |
|
} |
|
|
|
void interpolateCubic(float x, float* coeffs) |
|
{ |
|
const float A = -0.75f; |
|
|
|
coeffs[0] = ((A*(x + 1) - 5*A)*(x + 1) + 8*A)*(x + 1) - 4*A; |
|
coeffs[1] = ((A + 2)*x - (A + 3))*x*x + 1; |
|
coeffs[2] = ((A + 2)*(1 - x) - (A + 3))*(1 - x)*(1 - x) + 1; |
|
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; |
|
} |
|
|
|
void interpolateLanczos4(float x, float* coeffs) |
|
{ |
|
static const double s45 = 0.70710678118654752440084436210485; |
|
static const double cs[][2]= |
|
{{1, 0}, {-s45, -s45}, {0, 1}, {s45, -s45}, {-1, 0}, {s45, s45}, {0, -1}, {-s45, s45}}; |
|
|
|
if( x < FLT_EPSILON ) |
|
{ |
|
for( int i = 0; i < 8; i++ ) |
|
coeffs[i] = 0; |
|
coeffs[3] = 1; |
|
return; |
|
} |
|
|
|
float sum = 0; |
|
double y0=-(x+3)*CV_PI*0.25, s0 = sin(y0), c0=cos(y0); |
|
for(int i = 0; i < 8; i++ ) |
|
{ |
|
double y = -(x+3-i)*CV_PI*0.25; |
|
coeffs[i] = (float)((cs[i][0]*s0 + cs[i][1]*c0)/(y*y)); |
|
sum += coeffs[i]; |
|
} |
|
|
|
sum = 1.f/sum; |
|
for(int i = 0; i < 8; i++ ) |
|
coeffs[i] *= sum; |
|
} |
|
|
|
typedef void (*interpolate_method)(float x, float* coeffs); |
|
interpolate_method inter_array[] = { &interpolateLinear, &interpolateCubic, &interpolateLanczos4 }; |
|
} |
|
|
|
void CV_Resize_Test::generate_test_data() |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
|
|
// generating the src matrix structure |
|
Size ssize = randSize(rng), dsize; |
|
|
|
int depth = rng.uniform(0, CV_64F); |
|
while (depth == CV_8S || depth == CV_32S) |
|
depth = rng.uniform(0, CV_64F); |
|
|
|
int cn = rng.uniform(1, 4); |
|
while (cn == 2) |
|
cn = rng.uniform(1, 4); |
|
|
|
src.create(ssize, CV_MAKE_TYPE(depth, cn)); |
|
|
|
// generating the src matrix |
|
int x, y; |
|
if (cvtest::randInt(rng) % 2) |
|
{ |
|
for (y = 0; y < ssize.height; y += cell_size) |
|
for (x = 0; x < ssize.width; x += cell_size) |
|
rectangle(src, Point(x, y), Point(x + std::min<int>(cell_size, ssize.width - x), y + |
|
std::min<int>(cell_size, ssize.height - y)), Scalar::all((x + y) % 2 ? 255: 0), CV_FILLED); |
|
} |
|
else |
|
{ |
|
src = Scalar::all(255); |
|
for (y = cell_size; y < src.rows; y += cell_size) |
|
line(src, Point2i(0, y), Point2i(src.cols, y), Scalar::all(0), 1); |
|
for (x = cell_size; x < src.cols; x += cell_size) |
|
line(src, Point2i(x, 0), Point2i(x, src.rows), Scalar::all(0), 1); |
|
} |
|
|
|
// generating an interpolation type |
|
interpolation = rng.uniform(0, cv::INTER_MAX - 1); |
|
|
|
// generating the dst matrix structure |
|
if (interpolation == INTER_AREA) |
|
{ |
|
area_fast = rng.uniform(0., 1.) > 0.5; |
|
if (area_fast) |
|
{ |
|
scale_x = rng.uniform(2, 5); |
|
scale_y = rng.uniform(2, 5); |
|
} |
|
else |
|
{ |
|
scale_x = rng.uniform(1.0, 3.0); |
|
scale_y = rng.uniform(1.0, 3.0); |
|
} |
|
} |
|
else |
|
{ |
|
scale_x = rng.uniform(0.4, 4.0); |
|
scale_y = rng.uniform(0.4, 4.0); |
|
} |
|
CV_Assert(scale_x > 0.0f && scale_y > 0.0f); |
|
|
|
dsize.width = saturate_cast<int>((ssize.width + scale_x - 1) / scale_x); |
|
dsize.height = saturate_cast<int>((ssize.height + scale_y - 1) / scale_y); |
|
|
|
dst = Mat::zeros(dsize, src.type()); |
|
reference_dst = Mat::zeros(dst.size(), CV_MAKE_TYPE(CV_32F, dst.channels())); |
|
|
|
scale_x = src.cols / static_cast<double>(dst.cols); |
|
scale_y = src.rows / static_cast<double>(dst.rows); |
|
|
|
if (interpolation == INTER_AREA && (scale_x < 1.0 || scale_y < 1.0)) |
|
interpolation = INTER_LINEAR_EXACT; |
|
if (interpolation == INTER_LINEAR_EXACT && (depth == CV_32F || depth == CV_64F)) |
|
interpolation = INTER_LINEAR; |
|
|
|
area_fast = interpolation == INTER_AREA && |
|
fabs(scale_x - cvRound(scale_x)) < FLT_EPSILON && |
|
fabs(scale_y - cvRound(scale_y)) < FLT_EPSILON; |
|
if (area_fast) |
|
{ |
|
scale_x = cvRound(scale_x); |
|
scale_y = cvRound(scale_y); |
|
} |
|
} |
|
|
|
void CV_Resize_Test::run_func() |
|
{ |
|
cv::resize(src, dst, dst.size(), 0, 0, interpolation); |
|
} |
|
|
|
void CV_Resize_Test::run_reference_func() |
|
{ |
|
CV_ImageWarpBaseTest::prepare_test_data_for_reference_func(); |
|
|
|
if (interpolation == INTER_AREA) |
|
resize_area(); |
|
else |
|
resize_generic(); |
|
} |
|
|
|
double CV_Resize_Test::getWeight(double a, double b, int x) |
|
{ |
|
double w = std::min(static_cast<double>(x + 1), b) - std::max(static_cast<double>(x), a); |
|
CV_Assert(w >= 0); |
|
return w; |
|
} |
|
|
|
void CV_Resize_Test::resize_area() |
|
{ |
|
Size ssize = src.size(), dsize = reference_dst.size(); |
|
CV_Assert(ssize.area() > 0 && dsize.area() > 0); |
|
int cn = src.channels(); |
|
|
|
CV_Assert(scale_x >= 1.0 && scale_y >= 1.0); |
|
|
|
double fsy0 = 0, fsy1 = scale_y; |
|
for (int dy = 0; dy < dsize.height; ++dy) |
|
{ |
|
float* yD = reference_dst.ptr<float>(dy); |
|
int isy0 = cvFloor(fsy0), isy1 = std::min(cvFloor(fsy1), ssize.height - 1); |
|
CV_Assert(isy1 <= ssize.height && isy0 < ssize.height); |
|
|
|
double fsx0 = 0, fsx1 = scale_x; |
|
|
|
for (int dx = 0; dx < dsize.width; ++dx) |
|
{ |
|
float* xyD = yD + cn * dx; |
|
int isx0 = cvFloor(fsx0), isx1 = std::min(ssize.width - 1, cvFloor(fsx1)); |
|
|
|
CV_Assert(isx1 <= ssize.width); |
|
CV_Assert(isx0 < ssize.width); |
|
|
|
// for each pixel of dst |
|
for (int r = 0; r < cn; ++r) |
|
{ |
|
xyD[r] = 0.0f; |
|
double area = 0.0; |
|
for (int sy = isy0; sy <= isy1; ++sy) |
|
{ |
|
const float* yS = src.ptr<float>(sy); |
|
for (int sx = isx0; sx <= isx1; ++sx) |
|
{ |
|
double wy = getWeight(fsy0, fsy1, sy); |
|
double wx = getWeight(fsx0, fsx1, sx); |
|
double w = wx * wy; |
|
xyD[r] += static_cast<float>(yS[sx * cn + r] * w); |
|
area += w; |
|
} |
|
} |
|
|
|
CV_Assert(area != 0); |
|
// norming pixel |
|
xyD[r] = static_cast<float>(xyD[r] / area); |
|
} |
|
fsx1 = std::min((fsx0 = fsx1) + scale_x, static_cast<double>(ssize.width)); |
|
} |
|
fsy1 = std::min((fsy0 = fsy1) + scale_y, static_cast<double>(ssize.height)); |
|
} |
|
} |
|
|
|
// for interpolation type : INTER_LINEAR, INTER_LINEAR_EXACT, INTER_CUBIC, INTER_LANCZOS4 |
|
void CV_Resize_Test::resize_1d(const Mat& _src, Mat& _dst, int dy, const dim& _dim) |
|
{ |
|
Size dsize = _dst.size(); |
|
int cn = _dst.channels(); |
|
float* yD = _dst.ptr<float>(dy); |
|
|
|
if (interpolation == INTER_NEAREST) |
|
{ |
|
const float* yS = _src.ptr<float>(dy); |
|
for (int dx = 0; dx < dsize.width; ++dx) |
|
{ |
|
int isx = _dim[dx].first; |
|
const float* xyS = yS + isx * cn; |
|
float* xyD = yD + dx * cn; |
|
|
|
for (int r = 0; r < cn; ++r) |
|
xyD[r] = xyS[r]; |
|
} |
|
} |
|
else if (interpolation == INTER_LINEAR || interpolation == INTER_LINEAR_EXACT || interpolation == INTER_CUBIC || interpolation == INTER_LANCZOS4) |
|
{ |
|
interpolate_method inter_func = inter_array[interpolation - (interpolation == INTER_LANCZOS4 ? 2 : interpolation == INTER_LINEAR_EXACT ? 5 : 1)]; |
|
size_t elemsize = _src.elemSize(); |
|
|
|
int ofs = 0, ksize = 2; |
|
if (interpolation == INTER_CUBIC) |
|
ofs = 1, ksize = 4; |
|
else if (interpolation == INTER_LANCZOS4) |
|
ofs = 3, ksize = 8; |
|
|
|
Mat _extended_src_row(1, _src.cols + ksize * 2, _src.type()); |
|
const uchar* srow = _src.ptr(dy); |
|
memcpy(_extended_src_row.ptr() + elemsize * ksize, srow, _src.step); |
|
for (int k = 0; k < ksize; ++k) |
|
{ |
|
memcpy(_extended_src_row.ptr() + k * elemsize, srow, elemsize); |
|
memcpy(_extended_src_row.ptr() + (ksize + k) * elemsize + _src.step, srow + _src.step - elemsize, elemsize); |
|
} |
|
|
|
for (int dx = 0; dx < dsize.width; ++dx) |
|
{ |
|
int isx = _dim[dx].first; |
|
double fsx = _dim[dx].second; |
|
|
|
float *xyD = yD + dx * cn; |
|
const float* xyS = _extended_src_row.ptr<float>(0) + (isx + ksize - ofs) * cn; |
|
|
|
float w[8]; |
|
inter_func(static_cast<float>(fsx), w); |
|
|
|
for (int r = 0; r < cn; ++r) |
|
{ |
|
xyD[r] = 0; |
|
for (int k = 0; k < ksize; ++k) |
|
xyD[r] += w[k] * xyS[k * cn + r]; |
|
} |
|
} |
|
} |
|
else |
|
CV_Assert(0); |
|
} |
|
|
|
void CV_Resize_Test::generate_buffer(double scale, dim& _dim) |
|
{ |
|
size_t length = _dim.size(); |
|
for (size_t dx = 0; dx < length; ++dx) |
|
{ |
|
double fsx = scale * (dx + 0.5) - 0.5; |
|
int isx = cvFloor(fsx); |
|
_dim[dx] = std::make_pair(isx, fsx - isx); |
|
} |
|
} |
|
|
|
void CV_Resize_Test::resize_generic() |
|
{ |
|
Size dsize = reference_dst.size(), ssize = src.size(); |
|
CV_Assert(dsize.area() > 0 && ssize.area() > 0); |
|
|
|
dim dims[] = { dim(dsize.width), dim(dsize.height) }; |
|
if (interpolation == INTER_NEAREST) |
|
{ |
|
for (int dx = 0; dx < dsize.width; ++dx) |
|
dims[0][dx].first = std::min(cvFloor(dx * scale_x), ssize.width - 1); |
|
for (int dy = 0; dy < dsize.height; ++dy) |
|
dims[1][dy].first = std::min(cvFloor(dy * scale_y), ssize.height - 1); |
|
} |
|
else |
|
{ |
|
generate_buffer(scale_x, dims[0]); |
|
generate_buffer(scale_y, dims[1]); |
|
} |
|
|
|
Mat tmp(ssize.height, dsize.width, reference_dst.type()); |
|
for (int dy = 0; dy < tmp.rows; ++dy) |
|
resize_1d(src, tmp, dy, dims[0]); |
|
|
|
cv::Mat tmp_t(tmp.cols, tmp.rows, tmp.type()); |
|
cvtest::transpose(tmp, tmp_t); |
|
cv::Mat reference_dst_t(reference_dst.cols, reference_dst.rows, reference_dst.type()); |
|
cvtest::transpose(reference_dst, reference_dst_t); |
|
|
|
for (int dy = 0; dy < tmp_t.rows; ++dy) |
|
resize_1d(tmp_t, reference_dst_t, dy, dims[1]); |
|
|
|
cvtest::transpose(reference_dst_t, reference_dst); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// remap |
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
class CV_Remap_Test : |
|
public CV_ImageWarpBaseTest |
|
{ |
|
public: |
|
CV_Remap_Test(); |
|
|
|
virtual ~CV_Remap_Test(); |
|
|
|
private: |
|
typedef void (CV_Remap_Test::*remap_func)(const Mat&, Mat&); |
|
|
|
protected: |
|
virtual void generate_test_data(); |
|
virtual void prepare_test_data_for_reference_func(); |
|
|
|
virtual void run_func(); |
|
virtual void run_reference_func(); |
|
|
|
Mat mapx, mapy; |
|
int borderType; |
|
Scalar borderValue; |
|
|
|
remap_func funcs[2]; |
|
|
|
private: |
|
void remap_nearest(const Mat&, Mat&); |
|
void remap_generic(const Mat&, Mat&); |
|
|
|
void convert_maps(); |
|
const char* borderType_to_string() const; |
|
virtual void validate_results() const; |
|
}; |
|
|
|
CV_Remap_Test::CV_Remap_Test() : |
|
CV_ImageWarpBaseTest(), borderType(-1) |
|
{ |
|
funcs[0] = &CV_Remap_Test::remap_nearest; |
|
funcs[1] = &CV_Remap_Test::remap_generic; |
|
} |
|
|
|
CV_Remap_Test::~CV_Remap_Test() |
|
{ |
|
} |
|
|
|
void CV_Remap_Test::generate_test_data() |
|
{ |
|
CV_ImageWarpBaseTest::generate_test_data(); |
|
|
|
RNG& rng = ts->get_rng(); |
|
borderType = rng.uniform(1, BORDER_WRAP); |
|
borderValue = Scalar::all(rng.uniform(0, 255)); |
|
|
|
// generating the mapx, mapy matrices |
|
static const int mapx_types[] = { CV_16SC2, CV_32FC1, CV_32FC2 }; |
|
mapx.create(dst.size(), mapx_types[rng.uniform(0, sizeof(mapx_types) / sizeof(int))]); |
|
mapy.release(); |
|
|
|
const int n = std::min(std::min(src.cols, src.rows) / 10 + 1, 2); |
|
float _n = 0; //static_cast<float>(-n); |
|
|
|
switch (mapx.type()) |
|
{ |
|
case CV_16SC2: |
|
{ |
|
MatIterator_<Vec2s> begin_x = mapx.begin<Vec2s>(), end_x = mapx.end<Vec2s>(); |
|
for ( ; begin_x != end_x; ++begin_x) |
|
{ |
|
(*begin_x)[0] = static_cast<short>(rng.uniform(static_cast<int>(_n), std::max(src.cols + n - 1, 0))); |
|
(*begin_x)[1] = static_cast<short>(rng.uniform(static_cast<int>(_n), std::max(src.rows + n - 1, 0))); |
|
} |
|
|
|
if (interpolation != INTER_NEAREST) |
|
{ |
|
static const int mapy_types[] = { CV_16UC1, CV_16SC1 }; |
|
mapy.create(dst.size(), mapy_types[rng.uniform(0, sizeof(mapy_types) / sizeof(int))]); |
|
|
|
switch (mapy.type()) |
|
{ |
|
case CV_16UC1: |
|
{ |
|
MatIterator_<ushort> begin_y = mapy.begin<ushort>(), end_y = mapy.end<ushort>(); |
|
for ( ; begin_y != end_y; ++begin_y) |
|
*begin_y = static_cast<ushort>(rng.uniform(0, 1024)); |
|
} |
|
break; |
|
|
|
case CV_16SC1: |
|
{ |
|
MatIterator_<short> begin_y = mapy.begin<short>(), end_y = mapy.end<short>(); |
|
for ( ; begin_y != end_y; ++begin_y) |
|
*begin_y = static_cast<short>(rng.uniform(0, 1024)); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case CV_32FC1: |
|
{ |
|
mapy.create(dst.size(), CV_32FC1); |
|
float fscols = static_cast<float>(std::max(src.cols - 1 + n, 0)), |
|
fsrows = static_cast<float>(std::max(src.rows - 1 + n, 0)); |
|
MatIterator_<float> begin_x = mapx.begin<float>(), end_x = mapx.end<float>(); |
|
MatIterator_<float> begin_y = mapy.begin<float>(); |
|
for ( ; begin_x != end_x; ++begin_x, ++begin_y) |
|
{ |
|
*begin_x = rng.uniform(_n, fscols); |
|
*begin_y = rng.uniform(_n, fsrows); |
|
} |
|
} |
|
break; |
|
|
|
case CV_32FC2: |
|
{ |
|
float fscols = static_cast<float>(std::max(src.cols - 1 + n, 0)), |
|
fsrows = static_cast<float>(std::max(src.rows - 1 + n, 0)); |
|
int width = mapx.cols << 1; |
|
|
|
for (int y = 0; y < mapx.rows; ++y) |
|
{ |
|
float * ptr = mapx.ptr<float>(y); |
|
|
|
for (int x = 0; x < width; x += 2) |
|
{ |
|
ptr[x] = rng.uniform(_n, fscols); |
|
ptr[x + 1] = rng.uniform(_n, fsrows); |
|
} |
|
} |
|
} |
|
break; |
|
|
|
default: |
|
CV_Assert(0); |
|
break; |
|
} |
|
} |
|
|
|
void CV_Remap_Test::run_func() |
|
{ |
|
remap(src, dst, mapx, mapy, interpolation, borderType, borderValue); |
|
} |
|
|
|
void CV_Remap_Test::convert_maps() |
|
{ |
|
if (mapx.type() != CV_16SC2) |
|
convertMaps(mapx.clone(), mapy.clone(), mapx, mapy, CV_16SC2, interpolation == INTER_NEAREST); |
|
else if (interpolation != INTER_NEAREST) |
|
if (mapy.type() != CV_16UC1) |
|
mapy.clone().convertTo(mapy, CV_16UC1); |
|
|
|
if (interpolation == INTER_NEAREST) |
|
mapy = Mat(); |
|
CV_Assert(((interpolation == INTER_NEAREST && mapy.empty()) || mapy.type() == CV_16UC1 || |
|
mapy.type() == CV_16SC1) && mapx.type() == CV_16SC2); |
|
} |
|
|
|
const char* CV_Remap_Test::borderType_to_string() const |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
return "BORDER_CONSTANT"; |
|
if (borderType == BORDER_REPLICATE) |
|
return "BORDER_REPLICATE"; |
|
if (borderType == BORDER_REFLECT) |
|
return "BORDER_REFLECT"; |
|
if (borderType == BORDER_WRAP) |
|
return "BORDER_WRAP"; |
|
if (borderType == BORDER_REFLECT_101) |
|
return "BORDER_REFLECT_101"; |
|
return "Unsupported/Unknown border type"; |
|
} |
|
|
|
void CV_Remap_Test::prepare_test_data_for_reference_func() |
|
{ |
|
CV_ImageWarpBaseTest::prepare_test_data_for_reference_func(); |
|
convert_maps(); |
|
} |
|
|
|
void CV_Remap_Test::run_reference_func() |
|
{ |
|
prepare_test_data_for_reference_func(); |
|
|
|
if (interpolation == INTER_AREA) |
|
interpolation = INTER_LINEAR; |
|
|
|
int index = interpolation == INTER_NEAREST ? 0 : 1; |
|
(this->*funcs[index])(src, reference_dst); |
|
} |
|
|
|
void CV_Remap_Test::remap_nearest(const Mat& _src, Mat& _dst) |
|
{ |
|
CV_Assert(_src.depth() == CV_32F && _dst.type() == _src.type()); |
|
CV_Assert(mapx.type() == CV_16SC2 && mapy.empty()); |
|
|
|
Size ssize = _src.size(), dsize = _dst.size(); |
|
CV_Assert(ssize.area() > 0 && dsize.area() > 0); |
|
int cn = _src.channels(); |
|
|
|
for (int dy = 0; dy < dsize.height; ++dy) |
|
{ |
|
const short* yM = mapx.ptr<short>(dy); |
|
float* yD = _dst.ptr<float>(dy); |
|
|
|
for (int dx = 0; dx < dsize.width; ++dx) |
|
{ |
|
float* xyD = yD + cn * dx; |
|
int sx = yM[dx * 2], sy = yM[dx * 2 + 1]; |
|
|
|
if (sx >= 0 && sx < ssize.width && sy >= 0 && sy < ssize.height) |
|
{ |
|
const float *xyS = _src.ptr<float>(sy) + sx * cn; |
|
|
|
for (int r = 0; r < cn; ++r) |
|
xyD[r] = xyS[r]; |
|
} |
|
else if (borderType != BORDER_TRANSPARENT) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int r = 0; r < cn; ++r) |
|
xyD[r] = saturate_cast<float>(borderValue[r]); |
|
else |
|
{ |
|
sx = borderInterpolate(sx, ssize.width, borderType); |
|
sy = borderInterpolate(sy, ssize.height, borderType); |
|
CV_Assert(sx >= 0 && sy >= 0 && sx < ssize.width && sy < ssize.height); |
|
|
|
const float *xyS = _src.ptr<float>(sy) + sx * cn; |
|
|
|
for (int r = 0; r < cn; ++r) |
|
xyD[r] = xyS[r]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CV_Remap_Test::remap_generic(const Mat& _src, Mat& _dst) |
|
{ |
|
CV_Assert(mapx.type() == CV_16SC2 && mapy.type() == CV_16UC1); |
|
|
|
int ksize = 2; |
|
if (interpolation == INTER_CUBIC) |
|
ksize = 4; |
|
else if (interpolation == INTER_LANCZOS4) |
|
ksize = 8; |
|
else if (interpolation != INTER_LINEAR) |
|
assert(0); |
|
int ofs = (ksize / 2) - 1; |
|
|
|
CV_Assert(_src.depth() == CV_32F && _dst.type() == _src.type()); |
|
Size ssize = _src.size(), dsize = _dst.size(); |
|
int cn = _src.channels(), width1 = std::max(ssize.width - ksize + 1, 0), |
|
height1 = std::max(ssize.height - ksize + 1, 0); |
|
|
|
float ix[8], w[16]; |
|
interpolate_method inter_func = inter_array[interpolation - (interpolation == INTER_LANCZOS4 ? 2 : 1)]; |
|
|
|
for (int dy = 0; dy < dsize.height; ++dy) |
|
{ |
|
const short* yMx = mapx.ptr<short>(dy); |
|
const ushort* yMy = mapy.ptr<ushort>(dy); |
|
|
|
float* yD = _dst.ptr<float>(dy); |
|
|
|
for (int dx = 0; dx < dsize.width; ++dx) |
|
{ |
|
float* xyD = yD + dx * cn; |
|
float sx = yMx[dx * 2], sy = yMx[dx * 2 + 1]; |
|
int isx = cvFloor(sx), isy = cvFloor(sy); |
|
|
|
inter_func((yMy[dx] & (INTER_TAB_SIZE - 1)) / static_cast<float>(INTER_TAB_SIZE), w); |
|
inter_func(((yMy[dx] >> INTER_BITS) & (INTER_TAB_SIZE - 1)) / static_cast<float>(INTER_TAB_SIZE), w + ksize); |
|
|
|
isx -= ofs; |
|
isy -= ofs; |
|
|
|
if (isx >= 0 && isx < width1 && isy >= 0 && isy < height1) |
|
{ |
|
for (int r = 0; r < cn; ++r) |
|
{ |
|
for (int y = 0; y < ksize; ++y) |
|
{ |
|
const float* xyS = _src.ptr<float>(isy + y) + isx * cn; |
|
|
|
ix[y] = 0; |
|
for (int i = 0; i < ksize; ++i) |
|
ix[y] += w[i] * xyS[i * cn + r]; |
|
} |
|
xyD[r] = 0; |
|
for (int i = 0; i < ksize; ++i) |
|
xyD[r] += w[ksize + i] * ix[i]; |
|
} |
|
} |
|
else if (borderType != BORDER_TRANSPARENT) |
|
{ |
|
int ar_x[8], ar_y[8]; |
|
|
|
for (int k = 0; k < ksize; k++) |
|
{ |
|
ar_x[k] = borderInterpolate(isx + k, ssize.width, borderType) * cn; |
|
ar_y[k] = borderInterpolate(isy + k, ssize.height, borderType); |
|
} |
|
|
|
for (int r = 0; r < cn; r++) |
|
{ |
|
xyD[r] = 0; |
|
for (int i = 0; i < ksize; ++i) |
|
{ |
|
ix[i] = 0; |
|
if (ar_y[i] >= 0) |
|
{ |
|
const float* yS = _src.ptr<float>(ar_y[i]); |
|
for (int j = 0; j < ksize; ++j) |
|
ix[i] += saturate_cast<float>((ar_x[j] >= 0 ? yS[ar_x[j] + r] : borderValue[r]) * w[j]); |
|
} |
|
else |
|
for (int j = 0; j < ksize; ++j) |
|
ix[i] += saturate_cast<float>(borderValue[r] * w[j]); |
|
} |
|
for (int i = 0; i < ksize; ++i) |
|
xyD[r] += saturate_cast<float>(w[ksize + i] * ix[i]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CV_Remap_Test::validate_results() const |
|
{ |
|
CV_ImageWarpBaseTest::validate_results(); |
|
if (cvtest::TS::ptr()->get_err_code() == cvtest::TS::FAIL_BAD_ACCURACY) |
|
{ |
|
PRINT_TO_LOG("BorderType: %s\n", borderType_to_string()); |
|
PRINT_TO_LOG("BorderValue: (%f, %f, %f, %f)\n", |
|
borderValue[0], borderValue[1], borderValue[2], borderValue[3]); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// warpAffine |
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
class CV_WarpAffine_Test : |
|
public CV_Remap_Test |
|
{ |
|
public: |
|
CV_WarpAffine_Test(); |
|
|
|
virtual ~CV_WarpAffine_Test(); |
|
|
|
protected: |
|
virtual void generate_test_data(); |
|
virtual float get_success_error_level(int _interpolation, int _depth) const; |
|
|
|
virtual void run_func(); |
|
virtual void run_reference_func(); |
|
|
|
Mat M; |
|
private: |
|
void warpAffine(const Mat&, Mat&); |
|
}; |
|
|
|
CV_WarpAffine_Test::CV_WarpAffine_Test() : |
|
CV_Remap_Test() |
|
{ |
|
} |
|
|
|
CV_WarpAffine_Test::~CV_WarpAffine_Test() |
|
{ |
|
} |
|
|
|
void CV_WarpAffine_Test::generate_test_data() |
|
{ |
|
CV_Remap_Test::generate_test_data(); |
|
|
|
RNG& rng = ts->get_rng(); |
|
|
|
// generating the M 2x3 matrix |
|
static const int depths[] = { CV_32FC1, CV_64FC1 }; |
|
|
|
// generating 2d matrix |
|
M = getRotationMatrix2D(Point2f(src.cols / 2.f, src.rows / 2.f), |
|
rng.uniform(-180.f, 180.f), rng.uniform(0.4f, 2.0f)); |
|
int depth = depths[rng.uniform(0, sizeof(depths) / sizeof(depths[0]))]; |
|
if (M.depth() != depth) |
|
{ |
|
Mat tmp; |
|
M.convertTo(tmp, depth); |
|
M = tmp; |
|
} |
|
|
|
// warp_matrix is inverse |
|
if (rng.uniform(0., 1.) > 0) |
|
interpolation |= CV_WARP_INVERSE_MAP; |
|
} |
|
|
|
void CV_WarpAffine_Test::run_func() |
|
{ |
|
cv::warpAffine(src, dst, M, dst.size(), interpolation, borderType, borderValue); |
|
} |
|
|
|
float CV_WarpAffine_Test::get_success_error_level(int _interpolation, int _depth) const |
|
{ |
|
return _depth == CV_8U ? 0 : CV_ImageWarpBaseTest::get_success_error_level(_interpolation, _depth); |
|
} |
|
|
|
void CV_WarpAffine_Test::run_reference_func() |
|
{ |
|
Mat tmp = Mat::zeros(dst.size(), dst.type()); |
|
warpAffine(src, tmp); |
|
tmp.convertTo(reference_dst, reference_dst.depth()); |
|
} |
|
|
|
void CV_WarpAffine_Test::warpAffine(const Mat& _src, Mat& _dst) |
|
{ |
|
Size dsize = _dst.size(); |
|
|
|
CV_Assert(_src.size().area() > 0); |
|
CV_Assert(dsize.area() > 0); |
|
CV_Assert(_src.type() == _dst.type()); |
|
|
|
Mat tM; |
|
M.convertTo(tM, CV_64F); |
|
|
|
int inter = interpolation & INTER_MAX; |
|
if (inter == INTER_AREA) |
|
inter = INTER_LINEAR; |
|
|
|
mapx.create(dsize, CV_16SC2); |
|
if (inter != INTER_NEAREST) |
|
mapy.create(dsize, CV_16SC1); |
|
else |
|
mapy = Mat(); |
|
|
|
if (!(interpolation & CV_WARP_INVERSE_MAP)) |
|
invertAffineTransform(tM.clone(), tM); |
|
|
|
const int AB_BITS = MAX(10, (int)INTER_BITS); |
|
const int AB_SCALE = 1 << AB_BITS; |
|
int round_delta = (inter == INTER_NEAREST) ? AB_SCALE / 2 : (AB_SCALE / INTER_TAB_SIZE / 2); |
|
|
|
const softdouble* data_tM = tM.ptr<softdouble>(0); |
|
for (int dy = 0; dy < dsize.height; ++dy) |
|
{ |
|
short* yM = mapx.ptr<short>(dy); |
|
for (int dx = 0; dx < dsize.width; ++dx, yM += 2) |
|
{ |
|
int v1 = saturate_cast<int>(saturate_cast<int>(data_tM[0] * dx * AB_SCALE) + |
|
saturate_cast<int>((data_tM[1] * dy + data_tM[2]) * AB_SCALE) + round_delta), |
|
v2 = saturate_cast<int>(saturate_cast<int>(data_tM[3] * dx * AB_SCALE) + |
|
saturate_cast<int>((data_tM[4] * dy + data_tM[5]) * AB_SCALE) + round_delta); |
|
v1 >>= AB_BITS - INTER_BITS; |
|
v2 >>= AB_BITS - INTER_BITS; |
|
|
|
yM[0] = saturate_cast<short>(v1 >> INTER_BITS); |
|
yM[1] = saturate_cast<short>(v2 >> INTER_BITS); |
|
|
|
if (inter != INTER_NEAREST) |
|
mapy.ptr<short>(dy)[dx] = ((v2 & (INTER_TAB_SIZE - 1)) * INTER_TAB_SIZE + (v1 & (INTER_TAB_SIZE - 1))); |
|
} |
|
} |
|
|
|
CV_Assert(mapx.type() == CV_16SC2 && ((inter == INTER_NEAREST && mapy.empty()) || mapy.type() == CV_16SC1)); |
|
cv::remap(_src, _dst, mapx, mapy, inter, borderType, borderValue); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// warpPerspective |
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
class CV_WarpPerspective_Test : |
|
public CV_WarpAffine_Test |
|
{ |
|
public: |
|
CV_WarpPerspective_Test(); |
|
|
|
virtual ~CV_WarpPerspective_Test(); |
|
|
|
protected: |
|
virtual void generate_test_data(); |
|
virtual float get_success_error_level(int _interpolation, int _depth) const; |
|
|
|
virtual void run_func(); |
|
virtual void run_reference_func(); |
|
|
|
private: |
|
void warpPerspective(const Mat&, Mat&); |
|
}; |
|
|
|
CV_WarpPerspective_Test::CV_WarpPerspective_Test() : |
|
CV_WarpAffine_Test() |
|
{ |
|
} |
|
|
|
CV_WarpPerspective_Test::~CV_WarpPerspective_Test() |
|
{ |
|
} |
|
|
|
void CV_WarpPerspective_Test::generate_test_data() |
|
{ |
|
CV_Remap_Test::generate_test_data(); |
|
|
|
// generating the M 3x3 matrix |
|
RNG& rng = ts->get_rng(); |
|
|
|
float cols = static_cast<float>(src.cols), rows = static_cast<float>(src.rows); |
|
Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) }; |
|
Point2f dp[] = { Point2f(rng.uniform(0.0f, cols), rng.uniform(0.0f, rows)), |
|
Point2f(rng.uniform(0.0f, cols), rng.uniform(0.0f, rows)), |
|
Point2f(rng.uniform(0.0f, cols), rng.uniform(0.0f, rows)), |
|
Point2f(rng.uniform(0.0f, cols), rng.uniform(0.0f, rows)) }; |
|
M = getPerspectiveTransform(sp, dp); |
|
|
|
static const int depths[] = { CV_32F, CV_64F }; |
|
int depth = depths[rng.uniform(0, 2)]; |
|
M.clone().convertTo(M, depth); |
|
} |
|
|
|
void CV_WarpPerspective_Test::run_func() |
|
{ |
|
cv::warpPerspective(src, dst, M, dst.size(), interpolation, borderType, borderValue); |
|
} |
|
|
|
float CV_WarpPerspective_Test::get_success_error_level(int _interpolation, int _depth) const |
|
{ |
|
return CV_ImageWarpBaseTest::get_success_error_level(_interpolation, _depth); |
|
} |
|
|
|
void CV_WarpPerspective_Test::run_reference_func() |
|
{ |
|
Mat tmp = Mat::zeros(dst.size(), dst.type()); |
|
warpPerspective(src, tmp); |
|
tmp.convertTo(reference_dst, reference_dst.depth()); |
|
} |
|
|
|
void CV_WarpPerspective_Test::warpPerspective(const Mat& _src, Mat& _dst) |
|
{ |
|
Size ssize = _src.size(), dsize = _dst.size(); |
|
|
|
CV_Assert(ssize.area() > 0); |
|
CV_Assert(dsize.area() > 0); |
|
CV_Assert(_src.type() == _dst.type()); |
|
|
|
if (M.depth() != CV_64F) |
|
{ |
|
Mat tmp; |
|
M.convertTo(tmp, CV_64F); |
|
M = tmp; |
|
} |
|
|
|
if (!(interpolation & CV_WARP_INVERSE_MAP)) |
|
{ |
|
Mat tmp; |
|
invert(M, tmp); |
|
M = tmp; |
|
} |
|
|
|
int inter = interpolation & INTER_MAX; |
|
if (inter == INTER_AREA) |
|
inter = INTER_LINEAR; |
|
|
|
mapx.create(dsize, CV_16SC2); |
|
if (inter != INTER_NEAREST) |
|
mapy.create(dsize, CV_16SC1); |
|
else |
|
mapy = Mat(); |
|
|
|
double* tM = M.ptr<double>(0); |
|
for (int dy = 0; dy < dsize.height; ++dy) |
|
{ |
|
short* yMx = mapx.ptr<short>(dy); |
|
|
|
for (int dx = 0; dx < dsize.width; ++dx, yMx += 2) |
|
{ |
|
double den = tM[6] * dx + tM[7] * dy + tM[8]; |
|
den = den ? 1.0 / den : 0.0; |
|
|
|
if (inter == INTER_NEAREST) |
|
{ |
|
yMx[0] = saturate_cast<short>((tM[0] * dx + tM[1] * dy + tM[2]) * den); |
|
yMx[1] = saturate_cast<short>((tM[3] * dx + tM[4] * dy + tM[5]) * den); |
|
continue; |
|
} |
|
|
|
den *= INTER_TAB_SIZE; |
|
int v0 = saturate_cast<int>((tM[0] * dx + tM[1] * dy + tM[2]) * den); |
|
int v1 = saturate_cast<int>((tM[3] * dx + tM[4] * dy + tM[5]) * den); |
|
|
|
yMx[0] = saturate_cast<short>(v0 >> INTER_BITS); |
|
yMx[1] = saturate_cast<short>(v1 >> INTER_BITS); |
|
mapy.ptr<short>(dy)[dx] = saturate_cast<short>((v1 & (INTER_TAB_SIZE - 1)) * |
|
INTER_TAB_SIZE + (v0 & (INTER_TAB_SIZE - 1))); |
|
} |
|
} |
|
|
|
CV_Assert(mapx.type() == CV_16SC2 && ((inter == INTER_NEAREST && mapy.empty()) || mapy.type() == CV_16SC1)); |
|
cv::remap(_src, _dst, mapx, mapy, inter, borderType, borderValue); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// Tests |
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
TEST(Imgproc_Resize_Test, accuracy) { CV_Resize_Test test; test.safe_run(); } |
|
TEST(Imgproc_Remap_Test, accuracy) { CV_Remap_Test test; test.safe_run(); } |
|
TEST(Imgproc_WarpAffine_Test, accuracy) { CV_WarpAffine_Test test; test.safe_run(); } |
|
TEST(Imgproc_WarpPerspective_Test, accuracy) { CV_WarpPerspective_Test test; test.safe_run(); } |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
#ifdef OPENCV_TEST_BIGDATA |
|
|
|
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_LINEAR_EXACT, INTER_CUBIC, INTER_AREA) |
|
|
|
class Imgproc_Resize : |
|
public ::testing::TestWithParam<Interpolation> |
|
{ |
|
public: |
|
virtual void SetUp() |
|
{ |
|
inter = GetParam(); |
|
} |
|
|
|
protected: |
|
int inter; |
|
}; |
|
|
|
TEST_P(Imgproc_Resize, BigSize) |
|
{ |
|
cv::Mat src(46342, 46342, CV_8UC3, cv::Scalar::all(10)), dst; |
|
ASSERT_FALSE(src.empty()); |
|
|
|
ASSERT_NO_THROW(cv::resize(src, dst, cv::Size(), 0.5, 0.5, inter)); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, Imgproc_Resize, Interpolation::all()); |
|
|
|
#endif |
|
|
|
}} // namespace
|
|
|