Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

349 lines
12 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDAOPTFLOW_HPP
#define OPENCV_CUDAOPTFLOW_HPP
#ifndef __cplusplus
# error cudaoptflow.hpp header must be compiled as C++
#endif
#include "opencv2/core/cuda.hpp"
/**
@addtogroup cuda
@{
@defgroup cudaoptflow Optical Flow
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudaoptflow
//! @{
//
// Interface
//
/** @brief Base interface for dense optical flow algorithms.
*/
class CV_EXPORTS DenseOpticalFlow : public Algorithm
{
public:
/** @brief Calculates a dense optical flow.
@param I0 first input image.
@param I1 second input image of the same size and the same type as I0.
@param flow computed flow image that has the same size as I0 and type CV_32FC2.
@param stream Stream for the asynchronous version.
*/
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0;
};
/** @brief Base interface for sparse optical flow algorithms.
*/
class CV_EXPORTS SparseOpticalFlow : public Algorithm
{
public:
/** @brief Calculates a sparse optical flow.
@param prevImg First input image.
@param nextImg Second input image of the same size and the same type as prevImg.
@param prevPts Vector of 2D points for which the flow needs to be found.
@param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
@param status Output status vector. Each element of the vector is set to 1 if the
flow for the corresponding features has been found. Otherwise, it is set to 0.
@param err Optional output vector that contains error response for each point (inverse confidence).
@param stream Stream for the asynchronous version.
*/
virtual void calc(InputArray prevImg, InputArray nextImg,
InputArray prevPts, InputOutputArray nextPts,
OutputArray status,
OutputArray err = cv::noArray(),
Stream& stream = Stream::Null()) = 0;
};
//
// BroxOpticalFlow
//
/** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004).
*/
class CV_EXPORTS BroxOpticalFlow : public DenseOpticalFlow
{
public:
virtual double getFlowSmoothness() const = 0;
virtual void setFlowSmoothness(double alpha) = 0;
virtual double getGradientConstancyImportance() const = 0;
virtual void setGradientConstancyImportance(double gamma) = 0;
virtual double getPyramidScaleFactor() const = 0;
virtual void setPyramidScaleFactor(double scale_factor) = 0;
//! number of lagged non-linearity iterations (inner loop)
virtual int getInnerIterations() const = 0;
virtual void setInnerIterations(int inner_iterations) = 0;
//! number of warping iterations (number of pyramid levels)
virtual int getOuterIterations() const = 0;
virtual void setOuterIterations(int outer_iterations) = 0;
//! number of linear system solver iterations
virtual int getSolverIterations() const = 0;
virtual void setSolverIterations(int solver_iterations) = 0;
static Ptr<BroxOpticalFlow> create(
double alpha = 0.197,
double gamma = 50.0,
double scale_factor = 0.8,
int inner_iterations = 5,
int outer_iterations = 150,
int solver_iterations = 10);
};
//
// PyrLKOpticalFlow
//
/** @brief Class used for calculating a sparse optical flow.
The class can calculate an optical flow for a sparse feature set using the
iterative Lucas-Kanade method with pyramids.
@sa calcOpticalFlowPyrLK
@note
- An example of the Lucas Kanade optical flow algorithm can be found at
opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
*/
class CV_EXPORTS SparsePyrLKOpticalFlow : public SparseOpticalFlow
{
public:
virtual Size getWinSize() const = 0;
virtual void setWinSize(Size winSize) = 0;
virtual int getMaxLevel() const = 0;
virtual void setMaxLevel(int maxLevel) = 0;
virtual int getNumIters() const = 0;
virtual void setNumIters(int iters) = 0;
virtual bool getUseInitialFlow() const = 0;
virtual void setUseInitialFlow(bool useInitialFlow) = 0;
static Ptr<SparsePyrLKOpticalFlow> create(
Size winSize = Size(21, 21),
int maxLevel = 3,
int iters = 30,
bool useInitialFlow = false);
};
/** @brief Class used for calculating a dense optical flow.
The class can calculate an optical flow for a dense optical flow using the
iterative Lucas-Kanade method with pyramids.
*/
class CV_EXPORTS DensePyrLKOpticalFlow : public DenseOpticalFlow
{
public:
virtual Size getWinSize() const = 0;
virtual void setWinSize(Size winSize) = 0;
virtual int getMaxLevel() const = 0;
virtual void setMaxLevel(int maxLevel) = 0;
virtual int getNumIters() const = 0;
virtual void setNumIters(int iters) = 0;
virtual bool getUseInitialFlow() const = 0;
virtual void setUseInitialFlow(bool useInitialFlow) = 0;
static Ptr<DensePyrLKOpticalFlow> create(
Size winSize = Size(13, 13),
int maxLevel = 3,
int iters = 30,
bool useInitialFlow = false);
};
//
// FarnebackOpticalFlow
//
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
*/
class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow
{
public:
virtual int getNumLevels() const = 0;
virtual void setNumLevels(int numLevels) = 0;
virtual double getPyrScale() const = 0;
virtual void setPyrScale(double pyrScale) = 0;
virtual bool getFastPyramids() const = 0;
virtual void setFastPyramids(bool fastPyramids) = 0;
virtual int getWinSize() const = 0;
virtual void setWinSize(int winSize) = 0;
virtual int getNumIters() const = 0;
virtual void setNumIters(int numIters) = 0;
virtual int getPolyN() const = 0;
virtual void setPolyN(int polyN) = 0;
virtual double getPolySigma() const = 0;
virtual void setPolySigma(double polySigma) = 0;
virtual int getFlags() const = 0;
virtual void setFlags(int flags) = 0;
static Ptr<FarnebackOpticalFlow> create(
int numLevels = 5,
double pyrScale = 0.5,
bool fastPyramids = false,
int winSize = 13,
int numIters = 10,
int polyN = 5,
double polySigma = 1.1,
int flags = 0);
};
//
// OpticalFlowDual_TVL1
//
/** @brief Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method.
*
* @sa C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
* @sa Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
*/
class CV_EXPORTS OpticalFlowDual_TVL1 : public DenseOpticalFlow
{
public:
/**
* Time step of the numerical scheme.
*/
virtual double getTau() const = 0;
virtual void setTau(double tau) = 0;
/**
* Weight parameter for the data term, attachment parameter.
* This is the most relevant parameter, which determines the smoothness of the output.
* The smaller this parameter is, the smoother the solutions we obtain.
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
*/
virtual double getLambda() const = 0;
virtual void setLambda(double lambda) = 0;
/**
* Weight parameter for (u - v)^2, tightness parameter.
* It serves as a link between the attachment and the regularization terms.
* In theory, it should have a small value in order to maintain both parts in correspondence.
* The method is stable for a large range of values of this parameter.
*/
virtual double getGamma() const = 0;
virtual void setGamma(double gamma) = 0;
/**
* parameter used for motion estimation. It adds a variable allowing for illumination variations
* Set this parameter to 1. if you have varying illumination.
* See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
* Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145
*/
virtual double getTheta() const = 0;
virtual void setTheta(double theta) = 0;
/**
* Number of scales used to create the pyramid of images.
*/
virtual int getNumScales() const = 0;
virtual void setNumScales(int nscales) = 0;
/**
* Number of warpings per scale.
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
* This is a parameter that assures the stability of the method.
* It also affects the running time, so it is a compromise between speed and accuracy.
*/
virtual int getNumWarps() const = 0;
virtual void setNumWarps(int warps) = 0;
/**
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
* A small value will yield more accurate solutions at the expense of a slower convergence.
*/
virtual double getEpsilon() const = 0;
virtual void setEpsilon(double epsilon) = 0;
/**
* Stopping criterion iterations number used in the numerical scheme.
*/
virtual int getNumIterations() const = 0;
virtual void setNumIterations(int iterations) = 0;
virtual double getScaleStep() const = 0;
virtual void setScaleStep(double scaleStep) = 0;
virtual bool getUseInitialFlow() const = 0;
virtual void setUseInitialFlow(bool useInitialFlow) = 0;
static Ptr<OpticalFlowDual_TVL1> create(
double tau = 0.25,
double lambda = 0.15,
double theta = 0.3,
int nscales = 5,
int warps = 5,
double epsilon = 0.01,
int iterations = 300,
double scaleStep = 0.8,
double gamma = 0.0,
bool useInitialFlow = false);
};
//! @}
}} // namespace cv { namespace cuda {
#endif /* OPENCV_CUDAOPTFLOW_HPP */