mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.1 KiB
107 lines
3.1 KiB
#include "../perf_precomp.hpp" |
|
#include "opencv2/ts/ocl_perf.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace opencv_test { namespace ocl { |
|
using namespace ::perf; |
|
|
|
namespace { |
|
enum {STRIDE_OFF = 1, STRIDE_ON = 2}; |
|
CV_ENUM(StrideSize, STRIDE_OFF, STRIDE_ON); |
|
|
|
enum {GROUP_OFF = 1, GROUP_2 = 2}; |
|
CV_ENUM(GroupSize, GROUP_OFF, GROUP_2); |
|
} // namespace |
|
|
|
//Squared Size |
|
#define SSZ(n) cv::Size(n, n) |
|
|
|
typedef std::pair<MatShape, int> InpShapeNumOut; |
|
typedef tuple<Size, InpShapeNumOut, GroupSize, StrideSize> ConvParam; //kernel_size, inp shape, groups, stride |
|
typedef TestBaseWithParam<ConvParam> ConvolutionPerfTest; |
|
|
|
static inline MatShape blobShape(int count, int nplanes, int height, int width) |
|
{ |
|
int data[] = {count, nplanes, height, width}; |
|
return MatShape(data, data+4); |
|
} |
|
|
|
OCL_PERF_TEST_P( ConvolutionPerfTest, perf, Combine( |
|
Values(Size(1, 1), Size(3, 3), Size(5, 5), Size(11, 11)), |
|
Values(make_pair(blobShape(1, 4, 224, 224), 64), |
|
make_pair(blobShape(1, 64, 112, 122), 128), |
|
make_pair(blobShape(1, 256, 28, 28), 512)), |
|
GroupSize::all(), |
|
StrideSize::all()) |
|
) |
|
{ |
|
RNG rng(0); |
|
|
|
ConvParam params = GetParam(); |
|
int ksz = get<0>(params).width; |
|
MatShape inpShape = get<1>(params).first; |
|
int outCn = get<1>(params).second; |
|
int groups = get<2>(params); |
|
int stride = (ksz >= 11) ? 4 : (int)get<3>(params); |
|
|
|
int inpCn = inpShape[1]; |
|
int wgtSize[] = { outCn, inpCn/groups, ksz, ksz }; |
|
int biasSize[] = { outCn, 1, 1, 1 }; |
|
const int wtype = CV_32F; |
|
Mat wgtBlob(4, wgtSize, wtype), biasBlob(4, biasSize, wtype); |
|
Mat inpBlob(4, &inpShape[0], wtype); |
|
rng.fill(biasBlob, RNG::UNIFORM, -1, +1); |
|
rng.fill(wgtBlob, RNG::UNIFORM, -1, +1); |
|
rng.fill(inpBlob, RNG::UNIFORM, -1, +1); |
|
|
|
LayerParams lp; |
|
lp.set("num_output", outCn); |
|
lp.set("group", groups); |
|
lp.set("stride", stride); |
|
lp.set("kernel_size", ksz); |
|
lp.blobs.reserve(2); |
|
lp.blobs.push_back(wgtBlob); |
|
lp.blobs.push_back(biasBlob); |
|
|
|
std::vector<Mat*> inpBlobs(1, &inpBlob); |
|
std::vector<Mat> outBlobs, internalBlobs; |
|
|
|
Ptr<Layer> layer = cv::dnn::LayerFactory::createLayerInstance("Convolution", lp); |
|
std::vector<MatShape> inputShapes(1, shape(inpBlob)), outShapes, internals; |
|
layer->getMemoryShapes(inputShapes, 0, outShapes, internals); |
|
for (size_t i = 0; i < outShapes.size(); i++) |
|
{ |
|
outBlobs.push_back(Mat(outShapes[i], CV_32F)); |
|
} |
|
for (size_t i = 0; i < internals.size(); i++) |
|
{ |
|
internalBlobs.push_back(Mat()); |
|
if (total(internals[i])) |
|
internalBlobs.back().create(internals[i], CV_32F); |
|
} |
|
|
|
layer->finalize(inpBlobs, outBlobs); |
|
layer->preferableTarget = DNN_TARGET_OPENCL; |
|
|
|
Mat inpBlob2D = inpBlob.reshape(1, outCn); |
|
Mat wgtBlob2D = wgtBlob.reshape(1, outCn*(inpCn/groups)); |
|
Mat outBlob2D = outBlobs[0].reshape(1, outBlobs[0].size[0]); |
|
declare.in(inpBlob2D, wgtBlob2D, WARMUP_RNG).out(outBlob2D); |
|
|
|
// warmup |
|
layer->forward(inpBlobs, outBlobs, internalBlobs); |
|
|
|
TEST_CYCLE() |
|
{ |
|
layer->forward(inpBlobs, outBlobs, internalBlobs); |
|
} |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
} |
|
} |
|
|
|
#endif
|
|
|