mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
6.6 KiB
177 lines
6.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other GpuMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or bpied warranties, including, but not limited to, the bpied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
using namespace std; |
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
cv::gpu::FAST_GPU::FAST_GPU(int, bool, double) { throw_nogpu(); } |
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
|
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
|
void cv::gpu::FAST_GPU::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_nogpu(); } |
|
void cv::gpu::FAST_GPU::release() { throw_nogpu(); } |
|
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_nogpu(); return 0; } |
|
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat&) { throw_nogpu(); return 0; } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
cv::gpu::FAST_GPU::FAST_GPU(int _threshold, bool _nonmaxSupression, double _keypointsRatio) : |
|
nonmaxSupression(_nonmaxSupression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0) |
|
{ |
|
} |
|
|
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints) |
|
{ |
|
if (image.empty()) |
|
return; |
|
|
|
(*this)(image, mask, d_keypoints_); |
|
downloadKeypoints(d_keypoints_, keypoints); |
|
} |
|
|
|
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints) |
|
{ |
|
if (d_keypoints.empty()) |
|
return; |
|
|
|
Mat h_keypoints(d_keypoints); |
|
convertKeypoints(h_keypoints, keypoints); |
|
} |
|
|
|
void cv::gpu::FAST_GPU::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints) |
|
{ |
|
if (h_keypoints.empty()) |
|
return; |
|
|
|
CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4); |
|
|
|
int npoints = h_keypoints.cols; |
|
|
|
keypoints.resize(npoints); |
|
|
|
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW); |
|
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW); |
|
|
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]); |
|
keypoints[i] = kp; |
|
} |
|
} |
|
|
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints) |
|
{ |
|
calcKeyPointsLocation(img, mask); |
|
keypoints.cols = getKeyPoints(keypoints); |
|
} |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace fast |
|
{ |
|
int calcKeypoints_gpu(DevMem2Db img, DevMem2Db mask, short2* kpLoc, int maxKeypoints, DevMem2Di score, int threshold); |
|
int nonmaxSupression_gpu(const short2* kpLoc, int count, DevMem2Di score, short2* loc, float* response); |
|
} |
|
}}} |
|
|
|
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask) |
|
{ |
|
using namespace cv::gpu::device::fast; |
|
|
|
CV_Assert(img.type() == CV_8UC1); |
|
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size())); |
|
|
|
if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS)) |
|
CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics"); |
|
|
|
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area()); |
|
|
|
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_); |
|
|
|
if (nonmaxSupression) |
|
{ |
|
ensureSizeIsEnough(img.size(), CV_32SC1, score_); |
|
score_.setTo(Scalar::all(0)); |
|
} |
|
|
|
count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSupression ? score_ : DevMem2Di(), threshold); |
|
count_ = std::min(count_, maxKeypoints); |
|
|
|
return count_; |
|
} |
|
|
|
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints) |
|
{ |
|
using namespace cv::gpu::device::fast; |
|
|
|
if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS)) |
|
CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics"); |
|
|
|
if (count_ == 0) |
|
return 0; |
|
|
|
ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints); |
|
|
|
if (nonmaxSupression) |
|
return nonmaxSupression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW)); |
|
|
|
GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0)); |
|
kpLoc_.colRange(0, count_).copyTo(locRow); |
|
keypoints.row(1).setTo(Scalar::all(0)); |
|
|
|
return count_; |
|
} |
|
|
|
void cv::gpu::FAST_GPU::release() |
|
{ |
|
kpLoc_.release(); |
|
score_.release(); |
|
|
|
d_keypoints_.release(); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|