mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
305 lines
9.4 KiB
305 lines
9.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class CV_DisTransTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_DisTransTest(); |
|
|
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void run_func(); |
|
void prepare_to_validation( int ); |
|
|
|
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); |
|
int prepare_test_case( int test_case_idx ); |
|
|
|
int mask_size; |
|
int dist_type; |
|
int fill_labels; |
|
float mask[3]; |
|
}; |
|
|
|
|
|
CV_DisTransTest::CV_DisTransTest() |
|
{ |
|
test_array[INPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
optional_mask = false; |
|
element_wise_relative_error = true; |
|
} |
|
|
|
|
|
void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
types[INPUT][0] = CV_8UC1; |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1; |
|
types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1; |
|
|
|
if( cvtest::randInt(rng) & 1 ) |
|
{ |
|
mask_size = 3; |
|
} |
|
else |
|
{ |
|
mask_size = 5; |
|
} |
|
|
|
dist_type = cvtest::randInt(rng) % 3; |
|
dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 : CV_DIST_L2; |
|
|
|
// for now, check only the "labeled" distance transform mode |
|
fill_labels = 0; |
|
|
|
if( !fill_labels ) |
|
sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0); |
|
} |
|
|
|
|
|
double CV_DisTransTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
Size sz = test_mat[INPUT][0].size(); |
|
return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height); |
|
} |
|
|
|
|
|
void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) |
|
{ |
|
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); |
|
if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U ) |
|
{ |
|
low = Scalar::all(0); |
|
high = Scalar::all(10); |
|
} |
|
} |
|
|
|
int CV_DisTransTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); |
|
if( code > 0 ) |
|
{ |
|
// the function's response to an "all-nonzeros" image is not determined, |
|
// so put at least one zero point |
|
Mat& mat = test_mat[INPUT][0]; |
|
RNG& rng = ts->get_rng(); |
|
int i = cvtest::randInt(rng) % mat.rows; |
|
int j = cvtest::randInt(rng) % mat.cols; |
|
mat.at<uchar>(i,j) = 0; |
|
} |
|
|
|
return code; |
|
} |
|
|
|
|
|
void CV_DisTransTest::run_func() |
|
{ |
|
cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size, |
|
dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] ); |
|
} |
|
|
|
|
|
static void |
|
cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type, |
|
int mask_size, float* _mask, CvMat* /*_labels*/ ) |
|
{ |
|
int i, j, k; |
|
int width = _src->cols, height = _src->rows; |
|
const float init_val = 1e6; |
|
float mask[3]; |
|
CvMat* temp; |
|
int ofs[16] = {0}; |
|
float delta[16]; |
|
int tstep, count; |
|
|
|
CV_Assert( mask_size == 3 || mask_size == 5 ); |
|
|
|
if( dist_type == CV_DIST_USER ) |
|
memcpy( mask, _mask, sizeof(mask) ); |
|
else if( dist_type == CV_DIST_C ) |
|
{ |
|
mask_size = 3; |
|
mask[0] = mask[1] = 1.f; |
|
} |
|
else if( dist_type == CV_DIST_L1 ) |
|
{ |
|
mask_size = 3; |
|
mask[0] = 1.f; |
|
mask[1] = 2.f; |
|
} |
|
else if( mask_size == 3 ) |
|
{ |
|
mask[0] = 0.955f; |
|
mask[1] = 1.3693f; |
|
} |
|
else |
|
{ |
|
mask[0] = 1.0f; |
|
mask[1] = 1.4f; |
|
mask[2] = 2.1969f; |
|
} |
|
|
|
temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F ); |
|
tstep = temp->step / sizeof(float); |
|
|
|
if( mask_size == 3 ) |
|
{ |
|
count = 4; |
|
ofs[0] = -1; delta[0] = mask[0]; |
|
ofs[1] = -tstep-1; delta[1] = mask[1]; |
|
ofs[2] = -tstep; delta[2] = mask[0]; |
|
ofs[3] = -tstep+1; delta[3] = mask[1]; |
|
} |
|
else |
|
{ |
|
count = 8; |
|
ofs[0] = -1; delta[0] = mask[0]; |
|
ofs[1] = -tstep-2; delta[1] = mask[2]; |
|
ofs[2] = -tstep-1; delta[2] = mask[1]; |
|
ofs[3] = -tstep; delta[3] = mask[0]; |
|
ofs[4] = -tstep+1; delta[4] = mask[1]; |
|
ofs[5] = -tstep+2; delta[5] = mask[2]; |
|
ofs[6] = -tstep*2-1; delta[6] = mask[2]; |
|
ofs[7] = -tstep*2+1; delta[7] = mask[2]; |
|
} |
|
|
|
for( i = 0; i < mask_size/2; i++ ) |
|
{ |
|
float* t0 = (float*)(temp->data.ptr + i*temp->step); |
|
float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step); |
|
|
|
for( j = 0; j < width + mask_size - 1; j++ ) |
|
t0[j] = t1[j] = init_val; |
|
} |
|
|
|
for( i = 0; i < height; i++ ) |
|
{ |
|
uchar* s = _src->data.ptr + i*_src->step; |
|
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2); |
|
|
|
for( j = 0; j < mask_size/2; j++ ) |
|
tmp[-j-1] = tmp[j + width] = init_val; |
|
|
|
for( j = 0; j < width; j++ ) |
|
{ |
|
if( s[j] == 0 ) |
|
tmp[j] = 0; |
|
else |
|
{ |
|
float min_dist = init_val; |
|
for( k = 0; k < count; k++ ) |
|
{ |
|
float t = tmp[j+ofs[k]] + delta[k]; |
|
if( min_dist > t ) |
|
min_dist = t; |
|
} |
|
tmp[j] = min_dist; |
|
} |
|
} |
|
} |
|
|
|
for( i = height - 1; i >= 0; i-- ) |
|
{ |
|
float* d = (float*)(_dst->data.ptr + i*_dst->step); |
|
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2); |
|
|
|
for( j = width - 1; j >= 0; j-- ) |
|
{ |
|
float min_dist = tmp[j]; |
|
if( min_dist > mask[0] ) |
|
{ |
|
for( k = 0; k < count; k++ ) |
|
{ |
|
float t = tmp[j-ofs[k]] + delta[k]; |
|
if( min_dist > t ) |
|
min_dist = t; |
|
} |
|
tmp[j] = min_dist; |
|
} |
|
d[j] = min_dist; |
|
} |
|
} |
|
|
|
cvReleaseMat( &temp ); |
|
} |
|
|
|
|
|
void CV_DisTransTest::prepare_to_validation( int /*test_case_idx*/ ) |
|
{ |
|
CvMat _input = cvMat(test_mat[INPUT][0]), _output = cvMat(test_mat[REF_OUTPUT][0]); |
|
|
|
cvTsDistTransform( &_input, &_output, dist_type, mask_size, mask, 0 ); |
|
} |
|
|
|
|
|
TEST(Imgproc_DistanceTransform, accuracy) { CV_DisTransTest test; test.safe_run(); } |
|
|
|
BIGDATA_TEST(Imgproc_DistanceTransform, large_image_12218) |
|
{ |
|
const int lls_maxcnt = 79992000; // labels's maximum count |
|
const int lls_mincnt = 1; // labels's minimum count |
|
int i, j, nz; |
|
Mat src(8000, 20000, CV_8UC1), dst, labels; |
|
for( i = 0; i < src.rows; i++ ) |
|
for( j = 0; j < src.cols; j++ ) |
|
src.at<uchar>(i, j) = (j > (src.cols / 2)) ? 0 : 255; |
|
|
|
distanceTransform(src, dst, labels, cv::DIST_L2, cv::DIST_MASK_3, DIST_LABEL_PIXEL); |
|
|
|
double scale = (double)lls_mincnt / (double)lls_maxcnt; |
|
labels.convertTo(labels, CV_32SC1, scale); |
|
Size size = labels.size(); |
|
nz = cv::countNonZero(labels); |
|
EXPECT_EQ(nz, (size.height*size.width / 2)); |
|
} |
|
|
|
}} // namespace
|
|
|