mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
610 lines
20 KiB
610 lines
20 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { |
|
|
|
Stitcher Stitcher::createDefault(bool try_use_gpu) |
|
{ |
|
Stitcher stitcher; |
|
stitcher.setRegistrationResol(0.6); |
|
stitcher.setSeamEstimationResol(0.1); |
|
stitcher.setCompositingResol(ORIG_RESOL); |
|
stitcher.setPanoConfidenceThresh(1); |
|
stitcher.setWaveCorrection(true); |
|
stitcher.setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ); |
|
stitcher.setFeaturesMatcher(makePtr<detail::BestOf2NearestMatcher>(try_use_gpu)); |
|
stitcher.setBundleAdjuster(makePtr<detail::BundleAdjusterRay>()); |
|
|
|
#ifdef HAVE_OPENCV_CUDALEGACY |
|
if (try_use_gpu && cuda::getCudaEnabledDeviceCount() > 0) |
|
{ |
|
stitcher.setFeaturesFinder(makePtr<detail::OrbFeaturesFinder>()); |
|
stitcher.setWarper(makePtr<SphericalWarperGpu>()); |
|
stitcher.setSeamFinder(makePtr<detail::GraphCutSeamFinderGpu>()); |
|
} |
|
else |
|
#endif |
|
{ |
|
stitcher.setFeaturesFinder(makePtr<detail::OrbFeaturesFinder>()); |
|
stitcher.setWarper(makePtr<SphericalWarper>()); |
|
stitcher.setSeamFinder(makePtr<detail::GraphCutSeamFinder>(detail::GraphCutSeamFinderBase::COST_COLOR)); |
|
} |
|
|
|
stitcher.setExposureCompensator(makePtr<detail::BlocksGainCompensator>()); |
|
stitcher.setBlender(makePtr<detail::MultiBandBlender>(try_use_gpu)); |
|
|
|
stitcher.work_scale_ = 1; |
|
stitcher.seam_scale_ = 1; |
|
stitcher.seam_work_aspect_ = 1; |
|
stitcher.warped_image_scale_ = 1; |
|
|
|
return stitcher; |
|
} |
|
|
|
|
|
Ptr<Stitcher> Stitcher::create(Mode mode, bool try_use_gpu) |
|
{ |
|
Stitcher stit = createDefault(try_use_gpu); |
|
Ptr<Stitcher> stitcher = makePtr<Stitcher>(stit); |
|
|
|
switch (mode) |
|
{ |
|
case PANORAMA: // PANORAMA is the default |
|
// already setup |
|
break; |
|
|
|
case SCANS: |
|
stitcher->setWaveCorrection(false); |
|
stitcher->setFeaturesMatcher(makePtr<detail::AffineBestOf2NearestMatcher>(false, try_use_gpu)); |
|
stitcher->setBundleAdjuster(makePtr<detail::BundleAdjusterAffinePartial>()); |
|
stitcher->setWarper(makePtr<AffineWarper>()); |
|
stitcher->setExposureCompensator(makePtr<detail::NoExposureCompensator>()); |
|
break; |
|
|
|
default: |
|
CV_Error(Error::StsBadArg, "Invalid stitching mode. Must be one of Stitcher::Mode"); |
|
break; |
|
} |
|
|
|
return stitcher; |
|
} |
|
|
|
|
|
Stitcher::Status Stitcher::estimateTransform(InputArrayOfArrays images) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
return estimateTransform(images, std::vector<std::vector<Rect> >()); |
|
} |
|
|
|
|
|
Stitcher::Status Stitcher::estimateTransform(InputArrayOfArrays images, const std::vector<std::vector<Rect> > &rois) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
images.getUMatVector(imgs_); |
|
rois_ = rois; |
|
|
|
Status status; |
|
|
|
if ((status = matchImages()) != OK) |
|
return status; |
|
|
|
if ((status = estimateCameraParams()) != OK) |
|
return status; |
|
|
|
return OK; |
|
} |
|
|
|
|
|
|
|
Stitcher::Status Stitcher::composePanorama(OutputArray pano) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
return composePanorama(std::vector<UMat>(), pano); |
|
} |
|
|
|
|
|
Stitcher::Status Stitcher::composePanorama(InputArrayOfArrays images, OutputArray pano) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
LOGLN("Warping images (auxiliary)... "); |
|
|
|
std::vector<UMat> imgs; |
|
images.getUMatVector(imgs); |
|
if (!imgs.empty()) |
|
{ |
|
CV_Assert(imgs.size() == imgs_.size()); |
|
|
|
UMat img; |
|
seam_est_imgs_.resize(imgs.size()); |
|
|
|
for (size_t i = 0; i < imgs.size(); ++i) |
|
{ |
|
imgs_[i] = imgs[i]; |
|
resize(imgs[i], img, Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT); |
|
seam_est_imgs_[i] = img.clone(); |
|
} |
|
|
|
std::vector<UMat> seam_est_imgs_subset; |
|
std::vector<UMat> imgs_subset; |
|
|
|
for (size_t i = 0; i < indices_.size(); ++i) |
|
{ |
|
imgs_subset.push_back(imgs_[indices_[i]]); |
|
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]); |
|
} |
|
|
|
seam_est_imgs_ = seam_est_imgs_subset; |
|
imgs_ = imgs_subset; |
|
} |
|
|
|
UMat pano_; |
|
|
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
std::vector<Point> corners(imgs_.size()); |
|
std::vector<UMat> masks_warped(imgs_.size()); |
|
std::vector<UMat> images_warped(imgs_.size()); |
|
std::vector<Size> sizes(imgs_.size()); |
|
std::vector<UMat> masks(imgs_.size()); |
|
|
|
// Prepare image masks |
|
for (size_t i = 0; i < imgs_.size(); ++i) |
|
{ |
|
masks[i].create(seam_est_imgs_[i].size(), CV_8U); |
|
masks[i].setTo(Scalar::all(255)); |
|
} |
|
|
|
// Warp images and their masks |
|
Ptr<detail::RotationWarper> w = warper_->create(float(warped_image_scale_ * seam_work_aspect_)); |
|
for (size_t i = 0; i < imgs_.size(); ++i) |
|
{ |
|
Mat_<float> K; |
|
cameras_[i].K().convertTo(K, CV_32F); |
|
K(0,0) *= (float)seam_work_aspect_; |
|
K(0,2) *= (float)seam_work_aspect_; |
|
K(1,1) *= (float)seam_work_aspect_; |
|
K(1,2) *= (float)seam_work_aspect_; |
|
|
|
corners[i] = w->warp(seam_est_imgs_[i], K, cameras_[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]); |
|
sizes[i] = images_warped[i].size(); |
|
|
|
w->warp(masks[i], K, cameras_[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]); |
|
} |
|
|
|
|
|
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
// Compensate exposure before finding seams |
|
exposure_comp_->feed(corners, images_warped, masks_warped); |
|
for (size_t i = 0; i < imgs_.size(); ++i) |
|
exposure_comp_->apply(int(i), corners[i], images_warped[i], masks_warped[i]); |
|
|
|
// Find seams |
|
std::vector<UMat> images_warped_f(imgs_.size()); |
|
for (size_t i = 0; i < imgs_.size(); ++i) |
|
images_warped[i].convertTo(images_warped_f[i], CV_32F); |
|
seam_finder_->find(images_warped_f, corners, masks_warped); |
|
|
|
// Release unused memory |
|
seam_est_imgs_.clear(); |
|
images_warped.clear(); |
|
images_warped_f.clear(); |
|
masks.clear(); |
|
|
|
LOGLN("Compositing..."); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
|
|
UMat img_warped, img_warped_s; |
|
UMat dilated_mask, seam_mask, mask, mask_warped; |
|
|
|
//double compose_seam_aspect = 1; |
|
double compose_work_aspect = 1; |
|
bool is_blender_prepared = false; |
|
|
|
double compose_scale = 1; |
|
bool is_compose_scale_set = false; |
|
|
|
std::vector<detail::CameraParams> cameras_scaled(cameras_); |
|
|
|
UMat full_img, img; |
|
for (size_t img_idx = 0; img_idx < imgs_.size(); ++img_idx) |
|
{ |
|
LOGLN("Compositing image #" << indices_[img_idx] + 1); |
|
#if ENABLE_LOG |
|
int64 compositing_t = getTickCount(); |
|
#endif |
|
|
|
// Read image and resize it if necessary |
|
full_img = imgs_[img_idx]; |
|
if (!is_compose_scale_set) |
|
{ |
|
if (compose_resol_ > 0) |
|
compose_scale = std::min(1.0, std::sqrt(compose_resol_ * 1e6 / full_img.size().area())); |
|
is_compose_scale_set = true; |
|
|
|
// Compute relative scales |
|
//compose_seam_aspect = compose_scale / seam_scale_; |
|
compose_work_aspect = compose_scale / work_scale_; |
|
|
|
// Update warped image scale |
|
float warp_scale = static_cast<float>(warped_image_scale_ * compose_work_aspect); |
|
w = warper_->create(warp_scale); |
|
|
|
// Update corners and sizes |
|
for (size_t i = 0; i < imgs_.size(); ++i) |
|
{ |
|
// Update intrinsics |
|
cameras_scaled[i].ppx *= compose_work_aspect; |
|
cameras_scaled[i].ppy *= compose_work_aspect; |
|
cameras_scaled[i].focal *= compose_work_aspect; |
|
|
|
// Update corner and size |
|
Size sz = full_img_sizes_[i]; |
|
if (std::abs(compose_scale - 1) > 1e-1) |
|
{ |
|
sz.width = cvRound(full_img_sizes_[i].width * compose_scale); |
|
sz.height = cvRound(full_img_sizes_[i].height * compose_scale); |
|
} |
|
|
|
Mat K; |
|
cameras_scaled[i].K().convertTo(K, CV_32F); |
|
Rect roi = w->warpRoi(sz, K, cameras_scaled[i].R); |
|
corners[i] = roi.tl(); |
|
sizes[i] = roi.size(); |
|
} |
|
} |
|
if (std::abs(compose_scale - 1) > 1e-1) |
|
{ |
|
#if ENABLE_LOG |
|
int64 resize_t = getTickCount(); |
|
#endif |
|
resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT); |
|
LOGLN(" resize time: " << ((getTickCount() - resize_t) / getTickFrequency()) << " sec"); |
|
} |
|
else |
|
img = full_img; |
|
full_img.release(); |
|
Size img_size = img.size(); |
|
|
|
LOGLN(" after resize time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec"); |
|
|
|
Mat K; |
|
cameras_scaled[img_idx].K().convertTo(K, CV_32F); |
|
|
|
#if ENABLE_LOG |
|
int64 pt = getTickCount(); |
|
#endif |
|
// Warp the current image |
|
w->warp(img, K, cameras_[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped); |
|
LOGLN(" warp the current image: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); |
|
#if ENABLE_LOG |
|
pt = getTickCount(); |
|
#endif |
|
|
|
// Warp the current image mask |
|
mask.create(img_size, CV_8U); |
|
mask.setTo(Scalar::all(255)); |
|
w->warp(mask, K, cameras_[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped); |
|
LOGLN(" warp the current image mask: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); |
|
#if ENABLE_LOG |
|
pt = getTickCount(); |
|
#endif |
|
|
|
// Compensate exposure |
|
exposure_comp_->apply((int)img_idx, corners[img_idx], img_warped, mask_warped); |
|
LOGLN(" compensate exposure: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); |
|
#if ENABLE_LOG |
|
pt = getTickCount(); |
|
#endif |
|
|
|
img_warped.convertTo(img_warped_s, CV_16S); |
|
img_warped.release(); |
|
img.release(); |
|
mask.release(); |
|
|
|
// Make sure seam mask has proper size |
|
dilate(masks_warped[img_idx], dilated_mask, Mat()); |
|
resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT); |
|
|
|
bitwise_and(seam_mask, mask_warped, mask_warped); |
|
|
|
LOGLN(" other: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); |
|
#if ENABLE_LOG |
|
pt = getTickCount(); |
|
#endif |
|
|
|
if (!is_blender_prepared) |
|
{ |
|
blender_->prepare(corners, sizes); |
|
is_blender_prepared = true; |
|
} |
|
|
|
LOGLN(" other2: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); |
|
|
|
LOGLN(" feed..."); |
|
#if ENABLE_LOG |
|
int64 feed_t = getTickCount(); |
|
#endif |
|
// Blend the current image |
|
blender_->feed(img_warped_s, mask_warped, corners[img_idx]); |
|
LOGLN(" feed time: " << ((getTickCount() - feed_t) / getTickFrequency()) << " sec"); |
|
LOGLN("Compositing ## time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec"); |
|
} |
|
|
|
#if ENABLE_LOG |
|
int64 blend_t = getTickCount(); |
|
#endif |
|
UMat result, result_mask; |
|
blender_->blend(result, result_mask); |
|
LOGLN("blend time: " << ((getTickCount() - blend_t) / getTickFrequency()) << " sec"); |
|
|
|
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
// Preliminary result is in CV_16SC3 format, but all values are in [0,255] range, |
|
// so convert it to avoid user confusing |
|
result.convertTo(pano, CV_8U); |
|
|
|
return OK; |
|
} |
|
|
|
|
|
Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, OutputArray pano) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Status status = estimateTransform(images); |
|
if (status != OK) |
|
return status; |
|
return composePanorama(pano); |
|
} |
|
|
|
|
|
Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, const std::vector<std::vector<Rect> > &rois, OutputArray pano) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Status status = estimateTransform(images, rois); |
|
if (status != OK) |
|
return status; |
|
return composePanorama(pano); |
|
} |
|
|
|
|
|
Stitcher::Status Stitcher::matchImages() |
|
{ |
|
if ((int)imgs_.size() < 2) |
|
{ |
|
LOGLN("Need more images"); |
|
return ERR_NEED_MORE_IMGS; |
|
} |
|
|
|
work_scale_ = 1; |
|
seam_work_aspect_ = 1; |
|
seam_scale_ = 1; |
|
bool is_work_scale_set = false; |
|
bool is_seam_scale_set = false; |
|
UMat full_img, img; |
|
features_.resize(imgs_.size()); |
|
seam_est_imgs_.resize(imgs_.size()); |
|
full_img_sizes_.resize(imgs_.size()); |
|
|
|
LOGLN("Finding features..."); |
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
std::vector<UMat> feature_find_imgs(imgs_.size()); |
|
std::vector<std::vector<Rect> > feature_find_rois(rois_.size()); |
|
|
|
for (size_t i = 0; i < imgs_.size(); ++i) |
|
{ |
|
full_img = imgs_[i]; |
|
full_img_sizes_[i] = full_img.size(); |
|
|
|
if (registr_resol_ < 0) |
|
{ |
|
img = full_img; |
|
work_scale_ = 1; |
|
is_work_scale_set = true; |
|
} |
|
else |
|
{ |
|
if (!is_work_scale_set) |
|
{ |
|
work_scale_ = std::min(1.0, std::sqrt(registr_resol_ * 1e6 / full_img.size().area())); |
|
is_work_scale_set = true; |
|
} |
|
resize(full_img, img, Size(), work_scale_, work_scale_, INTER_LINEAR_EXACT); |
|
} |
|
if (!is_seam_scale_set) |
|
{ |
|
seam_scale_ = std::min(1.0, std::sqrt(seam_est_resol_ * 1e6 / full_img.size().area())); |
|
seam_work_aspect_ = seam_scale_ / work_scale_; |
|
is_seam_scale_set = true; |
|
} |
|
|
|
if (rois_.empty()) |
|
feature_find_imgs[i] = img; |
|
else |
|
{ |
|
feature_find_rois[i].resize(rois_[i].size()); |
|
for (size_t j = 0; j < rois_[i].size(); ++j) |
|
{ |
|
Point tl(cvRound(rois_[i][j].x * work_scale_), cvRound(rois_[i][j].y * work_scale_)); |
|
Point br(cvRound(rois_[i][j].br().x * work_scale_), cvRound(rois_[i][j].br().y * work_scale_)); |
|
feature_find_rois[i][j] = Rect(tl, br); |
|
} |
|
feature_find_imgs[i] = img; |
|
} |
|
features_[i].img_idx = (int)i; |
|
LOGLN("Features in image #" << i+1 << ": " << features_[i].keypoints.size()); |
|
|
|
resize(full_img, img, Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT); |
|
seam_est_imgs_[i] = img.clone(); |
|
} |
|
|
|
// find features possibly in parallel |
|
if (rois_.empty()) |
|
(*features_finder_)(feature_find_imgs, features_); |
|
else |
|
(*features_finder_)(feature_find_imgs, features_, feature_find_rois); |
|
|
|
// Do it to save memory |
|
features_finder_->collectGarbage(); |
|
full_img.release(); |
|
img.release(); |
|
feature_find_imgs.clear(); |
|
feature_find_rois.clear(); |
|
|
|
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
LOG("Pairwise matching"); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
(*features_matcher_)(features_, pairwise_matches_, matching_mask_); |
|
features_matcher_->collectGarbage(); |
|
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
// Leave only images we are sure are from the same panorama |
|
indices_ = detail::leaveBiggestComponent(features_, pairwise_matches_, (float)conf_thresh_); |
|
std::vector<UMat> seam_est_imgs_subset; |
|
std::vector<UMat> imgs_subset; |
|
std::vector<Size> full_img_sizes_subset; |
|
for (size_t i = 0; i < indices_.size(); ++i) |
|
{ |
|
imgs_subset.push_back(imgs_[indices_[i]]); |
|
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]); |
|
full_img_sizes_subset.push_back(full_img_sizes_[indices_[i]]); |
|
} |
|
seam_est_imgs_ = seam_est_imgs_subset; |
|
imgs_ = imgs_subset; |
|
full_img_sizes_ = full_img_sizes_subset; |
|
|
|
if ((int)imgs_.size() < 2) |
|
{ |
|
LOGLN("Need more images"); |
|
return ERR_NEED_MORE_IMGS; |
|
} |
|
|
|
return OK; |
|
} |
|
|
|
|
|
Stitcher::Status Stitcher::estimateCameraParams() |
|
{ |
|
/* TODO OpenCV ABI 4.x |
|
get rid of this dynamic_cast hack and use estimator_ |
|
*/ |
|
Ptr<detail::Estimator> estimator; |
|
if (dynamic_cast<detail::AffineBestOf2NearestMatcher*>(features_matcher_.get())) |
|
estimator = makePtr<detail::AffineBasedEstimator>(); |
|
else |
|
estimator = makePtr<detail::HomographyBasedEstimator>(); |
|
|
|
if (!(*estimator)(features_, pairwise_matches_, cameras_)) |
|
return ERR_HOMOGRAPHY_EST_FAIL; |
|
|
|
for (size_t i = 0; i < cameras_.size(); ++i) |
|
{ |
|
Mat R; |
|
cameras_[i].R.convertTo(R, CV_32F); |
|
cameras_[i].R = R; |
|
//LOGLN("Initial intrinsic parameters #" << indices_[i] + 1 << ":\n " << cameras_[i].K()); |
|
} |
|
|
|
bundle_adjuster_->setConfThresh(conf_thresh_); |
|
if (!(*bundle_adjuster_)(features_, pairwise_matches_, cameras_)) |
|
return ERR_CAMERA_PARAMS_ADJUST_FAIL; |
|
|
|
// Find median focal length and use it as final image scale |
|
std::vector<double> focals; |
|
for (size_t i = 0; i < cameras_.size(); ++i) |
|
{ |
|
//LOGLN("Camera #" << indices_[i] + 1 << ":\n" << cameras_[i].K()); |
|
focals.push_back(cameras_[i].focal); |
|
} |
|
|
|
std::sort(focals.begin(), focals.end()); |
|
if (focals.size() % 2 == 1) |
|
warped_image_scale_ = static_cast<float>(focals[focals.size() / 2]); |
|
else |
|
warped_image_scale_ = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f; |
|
|
|
if (do_wave_correct_) |
|
{ |
|
std::vector<Mat> rmats; |
|
for (size_t i = 0; i < cameras_.size(); ++i) |
|
rmats.push_back(cameras_[i].R.clone()); |
|
detail::waveCorrect(rmats, wave_correct_kind_); |
|
for (size_t i = 0; i < cameras_.size(); ++i) |
|
cameras_[i].R = rmats[i]; |
|
} |
|
|
|
return OK; |
|
} |
|
|
|
|
|
Ptr<Stitcher> createStitcher(bool try_use_gpu) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
return Stitcher::create(Stitcher::PANORAMA, try_use_gpu); |
|
} |
|
|
|
Ptr<Stitcher> createStitcherScans(bool try_use_gpu) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
return Stitcher::create(Stitcher::SCANS, try_use_gpu); |
|
} |
|
} // namespace cv
|
|
|