mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
2.9 KiB
90 lines
2.9 KiB
#include "traincascade_features.h" |
|
#include "cascadeclassifier.h" |
|
|
|
using namespace std; |
|
|
|
float calcNormFactor( const Mat& sum, const Mat& sqSum ) |
|
{ |
|
CV_DbgAssert( sum.cols > 3 && sqSum.rows > 3 ); |
|
Rect normrect( 1, 1, sum.cols - 3, sum.rows - 3 ); |
|
size_t p0, p1, p2, p3; |
|
CV_SUM_OFFSETS( p0, p1, p2, p3, normrect, sum.step1() ) |
|
double area = normrect.width * normrect.height; |
|
const int *sp = (const int*)sum.data; |
|
int valSum = sp[p0] - sp[p1] - sp[p2] + sp[p3]; |
|
const double *sqp = (const double *)sqSum.data; |
|
double valSqSum = sqp[p0] - sqp[p1] - sqp[p2] + sqp[p3]; |
|
return (float) sqrt( (double) (area * valSqSum - (double)valSum * valSum) ); |
|
} |
|
|
|
CvParams::CvParams() : name( "params" ) {} |
|
void CvParams::printDefaults() const |
|
{ cout << "--" << name << "--" << endl; } |
|
void CvParams::printAttrs() const {} |
|
bool CvParams::scanAttr( const String prmName, const String val ) { return false; } |
|
|
|
|
|
//---------------------------- FeatureParams -------------------------------------- |
|
|
|
CvFeatureParams::CvFeatureParams() : maxCatCount( 0 ), featSize( 1 ) |
|
{ |
|
name = CC_FEATURE_PARAMS; |
|
} |
|
|
|
void CvFeatureParams::init( const CvFeatureParams& fp ) |
|
{ |
|
maxCatCount = fp.maxCatCount; |
|
featSize = fp.featSize; |
|
} |
|
|
|
void CvFeatureParams::write( FileStorage &fs ) const |
|
{ |
|
fs << CC_MAX_CAT_COUNT << maxCatCount; |
|
fs << CC_FEATURE_SIZE << featSize; |
|
} |
|
|
|
bool CvFeatureParams::read( const FileNode &node ) |
|
{ |
|
if ( node.empty() ) |
|
return false; |
|
maxCatCount = node[CC_MAX_CAT_COUNT]; |
|
featSize = node[CC_FEATURE_SIZE]; |
|
return ( maxCatCount >= 0 && featSize >= 1 ); |
|
} |
|
|
|
Ptr<CvFeatureParams> CvFeatureParams::create( int featureType ) |
|
{ |
|
return featureType == HAAR ? Ptr<CvFeatureParams>(new CvHaarFeatureParams) : |
|
featureType == LBP ? Ptr<CvFeatureParams>(new CvLBPFeatureParams) : |
|
featureType == HOG ? Ptr<CvFeatureParams>(new CvHOGFeatureParams) : |
|
Ptr<CvFeatureParams>(); |
|
} |
|
|
|
//------------------------------------- FeatureEvaluator --------------------------------------- |
|
|
|
void CvFeatureEvaluator::init(const CvFeatureParams *_featureParams, |
|
int _maxSampleCount, Size _winSize ) |
|
{ |
|
CV_Assert(_maxSampleCount > 0); |
|
featureParams = (CvFeatureParams *)_featureParams; |
|
winSize = _winSize; |
|
numFeatures = 0; |
|
cls.create( (int)_maxSampleCount, 1, CV_32FC1 ); |
|
generateFeatures(); |
|
} |
|
|
|
void CvFeatureEvaluator::setImage(const Mat &img, uchar clsLabel, int idx) |
|
{ |
|
CV_Assert(img.cols == winSize.width); |
|
CV_Assert(img.rows == winSize.height); |
|
CV_Assert(idx < cls.rows); |
|
cls.ptr<float>(idx)[0] = clsLabel; |
|
} |
|
|
|
Ptr<CvFeatureEvaluator> CvFeatureEvaluator::create(int type) |
|
{ |
|
return type == CvFeatureParams::HAAR ? Ptr<CvFeatureEvaluator>(new CvHaarEvaluator) : |
|
type == CvFeatureParams::LBP ? Ptr<CvFeatureEvaluator>(new CvLBPEvaluator) : |
|
type == CvFeatureParams::HOG ? Ptr<CvFeatureEvaluator>(new CvHOGEvaluator) : |
|
Ptr<CvFeatureEvaluator>(); |
|
}
|
|
|