Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

159 lines
5.3 KiB

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include <iostream>
#include <fstream>
using namespace std;
using namespace cv;
void help()
{
cout << "This program shows the use of the Calonder point descriptor classifier"
"SURF is used to detect interest points, Calonder is used to describe/match these points\n"
"Format:" << endl <<
" classifier_file(to write) test_image file_with_train_images_filenames(txt)" <<
" or" << endl <<
" classifier_file(to read) test_image" << endl;
}
/*
* Generates random perspective transform of image
*/
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng )
{
H.create(3, 3, CV_32FC1);
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f);
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f);
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f);
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f);
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f);
warpPerspective( src, dst, H, src.size() );
}
/*
* Trains Calonder classifier and writes trained classifier in file:
* imgFilename - name of .txt file which contains list of full filenames of train images,
* classifierFilename - name of binary file in which classifier will be written.
*
* To train Calonder classifier RTreeClassifier class need to be used.
*/
void trainCalonderClassifier( const string& classifierFilename, const string& imgFilename )
{
// Reads train images
ifstream is( imgFilename.c_str(), ifstream::in );
vector<Mat> trainImgs;
while( !is.eof() )
{
string str;
getline( is, str );
if (str.empty()) break;
Mat img = imread( str, CV_LOAD_IMAGE_GRAYSCALE );
if( !img.empty() )
trainImgs.push_back( img );
}
if( trainImgs.empty() )
{
cout << "All train images can not be read." << endl;
exit(-1);
}
cout << trainImgs.size() << " train images were read." << endl;
// Extracts keypoints from train images
SurfFeatureDetector detector;
vector<BaseKeypoint> trainPoints;
vector<IplImage> iplTrainImgs(trainImgs.size());
for( size_t imgIdx = 0; imgIdx < trainImgs.size(); imgIdx++ )
{
iplTrainImgs[imgIdx] = trainImgs[imgIdx];
vector<KeyPoint> kps; detector.detect( trainImgs[imgIdx], kps );
for( size_t pointIdx = 0; pointIdx < kps.size(); pointIdx++ )
{
Point2f p = kps[pointIdx].pt;
trainPoints.push_back( BaseKeypoint(cvRound(p.x), cvRound(p.y), &iplTrainImgs[imgIdx]) );
}
}
// Trains Calonder classifier on extracted points
RTreeClassifier classifier;
classifier.train( trainPoints, theRNG(), 48, 9, 100 );
// Writes classifier
classifier.write( classifierFilename.c_str() );
}
/*
* Test Calonder classifier to match keypoints on given image:
* classifierFilename - name of file from which classifier will be read,
* imgFilename - test image filename.
*
* To calculate keypoint descriptors you may use RTreeClassifier class (as to train),
* but it is convenient to use CalonderDescriptorExtractor class which is wrapper of
* RTreeClassifier.
*/
void testCalonderClassifier( const string& classifierFilename, const string& imgFilename )
{
Mat img1 = imread( imgFilename, CV_LOAD_IMAGE_GRAYSCALE ), img2, H12;
if( img1.empty() )
{
cout << "Test image can not be read." << endl;
exit(-1);
}
warpPerspectiveRand( img1, img2, H12, theRNG() );
// Exstract keypoints from test images
SurfFeatureDetector detector;
vector<KeyPoint> keypoints1; detector.detect( img1, keypoints1 );
vector<KeyPoint> keypoints2; detector.detect( img2, keypoints2 );
// Compute descriptors
CalonderDescriptorExtractor<float> de( classifierFilename );
Mat descriptors1; de.compute( img1, keypoints1, descriptors1 );
Mat descriptors2; de.compute( img2, keypoints2, descriptors2 );
// Match descriptors
BruteForceMatcher<L1<float> > matcher;
vector<DMatch> matches;
matcher.match( descriptors1, descriptors2, matches );
// Prepare inlier mask
vector<char> matchesMask( matches.size(), 0 );
vector<Point2f> points1; KeyPoint::convert( keypoints1, points1 );
vector<Point2f> points2; KeyPoint::convert( keypoints2, points2 );
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
for( size_t mi = 0; mi < matches.size(); mi++ )
{
if( norm(points2[matches[mi].trainIdx] - points1t.at<Point2f>(mi,0)) < 4 ) // inlier
matchesMask[mi] = 1;
}
// Draw
Mat drawImg;
drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask );
string winName = "Matches";
namedWindow( winName, WINDOW_AUTOSIZE );
imshow( winName, drawImg );
waitKey();
}
int main( int argc, char **argv )
{
if( argc != 4 && argc != 3 )
{
help();
return -1;
}
if( argc == 4 )
trainCalonderClassifier( argv[1], argv[3] );
testCalonderClassifier( argv[1], argv[2] );
return 0;
}