mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
499 lines
19 KiB
499 lines
19 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
const string FEATURES2D_DIR = "features2d"; |
|
const string IMAGE_FILENAME = "tsukuba.png"; |
|
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; |
|
|
|
/****************************************************************************************\ |
|
* Regression tests for descriptor extractors. * |
|
\****************************************************************************************/ |
|
static void writeMatInBin( const Mat& mat, const string& filename ) |
|
{ |
|
FILE* f = fopen( filename.c_str(), "wb"); |
|
if( f ) |
|
{ |
|
CV_Assert(4 == sizeof(int)); |
|
int type = mat.type(); |
|
fwrite( (void*)&mat.rows, sizeof(int), 1, f ); |
|
fwrite( (void*)&mat.cols, sizeof(int), 1, f ); |
|
fwrite( (void*)&type, sizeof(int), 1, f ); |
|
int dataSize = (int)(mat.step * mat.rows); |
|
fwrite( (void*)&dataSize, sizeof(int), 1, f ); |
|
fwrite( (void*)mat.ptr(), 1, dataSize, f ); |
|
fclose(f); |
|
} |
|
} |
|
|
|
static Mat readMatFromBin( const string& filename ) |
|
{ |
|
FILE* f = fopen( filename.c_str(), "rb" ); |
|
if( f ) |
|
{ |
|
CV_Assert(4 == sizeof(int)); |
|
int rows, cols, type, dataSize; |
|
size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f ); |
|
size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f ); |
|
size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f ); |
|
size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f ); |
|
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); |
|
|
|
int step = dataSize / rows / CV_ELEM_SIZE(type); |
|
CV_Assert(step >= cols); |
|
|
|
Mat returnMat = Mat(rows, step, type).colRange(0, cols); |
|
|
|
size_t elements_read = fread( returnMat.ptr(), 1, dataSize, f ); |
|
CV_Assert(elements_read == (size_t)(dataSize)); |
|
|
|
fclose(f); |
|
|
|
return returnMat; |
|
} |
|
return Mat(); |
|
} |
|
|
|
template<class Distance> |
|
class CV_DescriptorExtractorTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
typedef typename Distance::ValueType ValueType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor, |
|
Distance d = Distance(), Ptr<FeatureDetector> _detector = Ptr<FeatureDetector>()): |
|
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {} |
|
|
|
~CV_DescriptorExtractorTest() |
|
{ |
|
} |
|
protected: |
|
virtual void createDescriptorExtractor() {} |
|
|
|
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) |
|
{ |
|
if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
CV_Assert( DataType<ValueType>::type == validDescriptors.type() ); |
|
|
|
int dimension = validDescriptors.cols; |
|
DistanceType curMaxDist = 0; |
|
size_t exact_count = 0, failed_count = 0; |
|
for( int y = 0; y < validDescriptors.rows; y++ ) |
|
{ |
|
DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension ); |
|
if (dist == 0) |
|
exact_count++; |
|
if( dist > curMaxDist ) |
|
{ |
|
if (dist > maxDist) |
|
failed_count++; |
|
curMaxDist = dist; |
|
} |
|
#if 0 |
|
if (dist > 0) |
|
{ |
|
std::cout << "i=" << y << " fail_count=" << failed_count << " dist=" << dist << std::endl; |
|
std::cout << "valid: " << validDescriptors.row(y) << std::endl; |
|
std::cout << " calc: " << calcDescriptors.row(y) << std::endl; |
|
} |
|
#endif |
|
} |
|
|
|
float exact_percents = (100 * (float)exact_count / validDescriptors.rows); |
|
float failed_percents = (100 * (float)failed_count / validDescriptors.rows); |
|
std::stringstream ss; |
|
ss << "Exact count (dist == 0): " << exact_count << " (" << (int)exact_percents << "%)" << std::endl |
|
<< "Failed count (dist > " << maxDist << "): " << failed_count << " (" << (int)failed_percents << "%)" << std::endl |
|
<< "Max distance between valid and computed descriptors (" << validDescriptors.size() << "): " << curMaxDist; |
|
EXPECT_LE(failed_percents, 20.0f); |
|
std::cout << ss.str() << std::endl; |
|
} |
|
|
|
void emptyDataTest() |
|
{ |
|
assert( dextractor ); |
|
|
|
// One image. |
|
Mat image; |
|
vector<KeyPoint> keypoints; |
|
Mat descriptors; |
|
|
|
try |
|
{ |
|
dextractor->compute( image, keypoints, descriptors ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
RNG rng; |
|
image = cvtest::randomMat(rng, Size(50, 50), CV_8UC3, 0, 255, false); |
|
try |
|
{ |
|
dextractor->compute( image, keypoints, descriptors ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
|
|
// Several images. |
|
vector<Mat> images; |
|
vector<vector<KeyPoint> > keypointsCollection; |
|
vector<Mat> descriptorsCollection; |
|
try |
|
{ |
|
dextractor->compute( images, keypointsCollection, descriptorsCollection ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
} |
|
} |
|
|
|
void regressionTest() |
|
{ |
|
assert( dextractor ); |
|
|
|
// Read the test image. |
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
|
Mat img = imread( imgFilename ); |
|
if( img.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
const std::string keypoints_filename = string(ts->get_data_path()) + |
|
(detector.empty() |
|
? (FEATURES2D_DIR + "/" + std::string("keypoints.xml.gz")) |
|
: (DESCRIPTOR_DIR + "/" + name + "_keypoints.xml.gz")); |
|
FileStorage fs(keypoints_filename, FileStorage::READ); |
|
|
|
vector<KeyPoint> keypoints; |
|
EXPECT_TRUE(fs.isOpened()) << "Keypoint testdata is missing. Re-computing and re-writing keypoints testdata..."; |
|
if (!fs.isOpened()) |
|
{ |
|
fs.open(keypoints_filename, FileStorage::WRITE); |
|
ASSERT_TRUE(fs.isOpened()) << "File for writing keypoints can not be opened."; |
|
if (detector.empty()) |
|
{ |
|
Ptr<ORB> fd = ORB::create(); |
|
fd->detect(img, keypoints); |
|
} |
|
else |
|
{ |
|
detector->detect(img, keypoints); |
|
} |
|
write(fs, "keypoints", keypoints); |
|
fs.release(); |
|
} |
|
else |
|
{ |
|
read(fs.getFirstTopLevelNode(), keypoints); |
|
fs.release(); |
|
} |
|
|
|
if(!detector.empty()) |
|
{ |
|
vector<KeyPoint> calcKeypoints; |
|
detector->detect(img, calcKeypoints); |
|
// TODO validate received keypoints |
|
int diff = abs((int)calcKeypoints.size() - (int)keypoints.size()); |
|
if (diff > 0) |
|
{ |
|
std::cout << "Keypoints difference: " << diff << std::endl; |
|
EXPECT_LE(diff, (int)(keypoints.size() * 0.03f)); |
|
} |
|
} |
|
ASSERT_FALSE(keypoints.empty()); |
|
{ |
|
Mat calcDescriptors; |
|
double t = (double)getTickCount(); |
|
dextractor->compute(img, keypoints, calcDescriptors); |
|
t = getTickCount() - t; |
|
ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows); |
|
|
|
if (calcDescriptors.rows != (int)keypoints.size()) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); |
|
ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); |
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
if (calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType()) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); |
|
ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); |
|
ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); |
|
ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); |
|
ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
// TODO read and write descriptor extractor parameters and check them |
|
Mat validDescriptors = readDescriptors(); |
|
EXPECT_FALSE(validDescriptors.empty()) << "Descriptors testdata is missing. Re-writing descriptors testdata..."; |
|
if (!validDescriptors.empty()) |
|
{ |
|
compareDescriptors(validDescriptors, calcDescriptors); |
|
} |
|
else |
|
{ |
|
ASSERT_TRUE(writeDescriptors(calcDescriptors)) << "Descriptors can not be written."; |
|
} |
|
} |
|
} |
|
|
|
void run(int) |
|
{ |
|
createDescriptorExtractor(); |
|
if( !dextractor ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
emptyDataTest(); |
|
regressionTest(); |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK ); |
|
} |
|
|
|
virtual Mat readDescriptors() |
|
{ |
|
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
|
return res; |
|
} |
|
|
|
virtual bool writeDescriptors( Mat& descs ) |
|
{ |
|
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
|
return true; |
|
} |
|
|
|
string name; |
|
const DistanceType maxDist; |
|
Ptr<DescriptorExtractor> dextractor; |
|
Distance distance; |
|
Ptr<FeatureDetector> detector; |
|
|
|
private: |
|
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Tests registrations * |
|
\****************************************************************************************/ |
|
|
|
TEST( Features2d_DescriptorExtractor_BRISK, regression ) |
|
{ |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk", |
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)2.f, |
|
BRISK::create() ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_ORB, regression ) |
|
{ |
|
// TODO adjust the parameters below |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb", |
|
#if CV_NEON |
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)25.f, |
|
#else |
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f, |
|
#endif |
|
ORB::create() ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_KAZE, regression ) |
|
{ |
|
CV_DescriptorExtractorTest< L2<float> > test( "descriptor-kaze", 0.03f, |
|
KAZE::create(), |
|
L2<float>(), KAZE::create() ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_AKAZE, regression ) |
|
{ |
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-akaze", |
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)(486*0.05f), |
|
AKAZE::create(), |
|
Hamming(), AKAZE::create()); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor_AKAZE_DESCRIPTOR_KAZE, regression ) |
|
{ |
|
CV_DescriptorExtractorTest< L2<float> > test( "descriptor-akaze-with-kaze-desc", 0.03f, |
|
AKAZE::create(AKAZE::DESCRIPTOR_KAZE), |
|
L2<float>(), AKAZE::create(AKAZE::DESCRIPTOR_KAZE)); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_DescriptorExtractor, batch ) |
|
{ |
|
string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf"); |
|
vector<Mat> imgs, descriptors; |
|
vector<vector<KeyPoint> > keypoints; |
|
int i, n = 6; |
|
Ptr<ORB> orb = ORB::create(); |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
string imgname = format("%s/img%d.png", path.c_str(), i+1); |
|
Mat img = imread(imgname, 0); |
|
imgs.push_back(img); |
|
} |
|
|
|
orb->detect(imgs, keypoints); |
|
orb->compute(imgs, keypoints, descriptors); |
|
|
|
ASSERT_EQ((int)keypoints.size(), n); |
|
ASSERT_EQ((int)descriptors.size(), n); |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
EXPECT_GT((int)keypoints[i].size(), 100); |
|
EXPECT_GT(descriptors[i].rows, 100); |
|
} |
|
} |
|
|
|
class DescriptorImage : public TestWithParam<std::string> |
|
{ |
|
protected: |
|
virtual void SetUp() { |
|
pattern = GetParam(); |
|
} |
|
|
|
std::string pattern; |
|
}; |
|
|
|
TEST_P(DescriptorImage, no_crash) |
|
{ |
|
vector<String> fnames; |
|
glob(cvtest::TS::ptr()->get_data_path() + pattern, fnames, false); |
|
sort(fnames.begin(), fnames.end()); |
|
|
|
Ptr<AKAZE> akaze_mldb = AKAZE::create(AKAZE::DESCRIPTOR_MLDB); |
|
Ptr<AKAZE> akaze_mldb_upright = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT); |
|
Ptr<AKAZE> akaze_mldb_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 256); |
|
Ptr<AKAZE> akaze_mldb_upright_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT, 256); |
|
Ptr<AKAZE> akaze_kaze = AKAZE::create(AKAZE::DESCRIPTOR_KAZE); |
|
Ptr<AKAZE> akaze_kaze_upright = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT); |
|
Ptr<ORB> orb = ORB::create(); |
|
Ptr<KAZE> kaze = KAZE::create(); |
|
Ptr<BRISK> brisk = BRISK::create(); |
|
size_t n = fnames.size(); |
|
vector<KeyPoint> keypoints; |
|
Mat descriptors; |
|
orb->setMaxFeatures(5000); |
|
|
|
for(size_t i = 0; i < n; i++ ) |
|
{ |
|
printf("%d. image: %s:\n", (int)i, fnames[i].c_str()); |
|
if( strstr(fnames[i].c_str(), "MP.png") != 0 ) |
|
{ |
|
printf("\tskip\n"); |
|
continue; |
|
} |
|
bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0; |
|
|
|
Mat img = imread(fnames[i], -1); |
|
|
|
printf("\t%dx%d\n", img.cols, img.rows); |
|
|
|
#define TEST_DETECTOR(name, descriptor) \ |
|
keypoints.clear(); descriptors.release(); \ |
|
printf("\t" name "\n"); fflush(stdout); \ |
|
descriptor->detectAndCompute(img, noArray(), keypoints, descriptors); \ |
|
printf("\t\t\t(%d keypoints, descriptor size = %d)\n", (int)keypoints.size(), descriptors.cols); fflush(stdout); \ |
|
if (checkCount) \ |
|
{ \ |
|
EXPECT_GT((int)keypoints.size(), 0); \ |
|
} \ |
|
ASSERT_EQ(descriptors.rows, (int)keypoints.size()); |
|
|
|
TEST_DETECTOR("AKAZE:MLDB", akaze_mldb); |
|
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT", akaze_mldb_upright); |
|
TEST_DETECTOR("AKAZE:MLDB_256", akaze_mldb_256); |
|
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT_256", akaze_mldb_upright_256); |
|
TEST_DETECTOR("AKAZE:KAZE", akaze_kaze); |
|
TEST_DETECTOR("AKAZE:KAZE_UPRIGHT", akaze_kaze_upright); |
|
TEST_DETECTOR("KAZE", kaze); |
|
TEST_DETECTOR("ORB", orb); |
|
TEST_DETECTOR("BRISK", brisk); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2d, DescriptorImage, |
|
testing::Values( |
|
"shared/lena.png", |
|
"shared/box*.png", |
|
"shared/fruits*.png", |
|
"shared/airplane.png", |
|
"shared/graffiti.png", |
|
"shared/1_itseez-0001*.png", |
|
"shared/pic*.png", |
|
"shared/templ.png" |
|
) |
|
); |
|
|
|
}} // namespace
|
|
|