Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3087 lines
121 KiB
3087 lines
121 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_FEATURES_2D_HPP__ |
|
#define __OPENCV_FEATURES_2D_HPP__ |
|
|
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/flann/miniflann.hpp" |
|
|
|
#ifdef __cplusplus |
|
#include <limits> |
|
|
|
extern "C" { |
|
#endif |
|
|
|
typedef struct CvSURFPoint |
|
{ |
|
CvPoint2D32f pt; |
|
|
|
int laplacian; |
|
int size; |
|
float dir; |
|
float hessian; |
|
|
|
} CvSURFPoint; |
|
|
|
CV_INLINE CvSURFPoint cvSURFPoint( CvPoint2D32f pt, int laplacian, |
|
int size, float dir CV_DEFAULT(0), |
|
float hessian CV_DEFAULT(0)) |
|
{ |
|
CvSURFPoint kp; |
|
|
|
kp.pt = pt; |
|
kp.laplacian = laplacian; |
|
kp.size = size; |
|
kp.dir = dir; |
|
kp.hessian = hessian; |
|
|
|
return kp; |
|
} |
|
|
|
typedef struct CvSURFParams |
|
{ |
|
int extended; |
|
int upright; |
|
double hessianThreshold; |
|
|
|
int nOctaves; |
|
int nOctaveLayers; |
|
|
|
} CvSURFParams; |
|
|
|
CVAPI(CvSURFParams) cvSURFParams( double hessianThreshold, int extended CV_DEFAULT(0) ); |
|
|
|
// If useProvidedKeyPts!=0, keypoints are not detected, but descriptors are computed |
|
// at the locations provided in keypoints (a CvSeq of CvSURFPoint). |
|
CVAPI(void) cvExtractSURF( const CvArr* img, const CvArr* mask, |
|
CvSeq** keypoints, CvSeq** descriptors, |
|
CvMemStorage* storage, CvSURFParams params, int useProvidedKeyPts CV_DEFAULT(0) ); |
|
|
|
/*! |
|
Maximal Stable Regions Parameters |
|
*/ |
|
typedef struct CvMSERParams |
|
{ |
|
//! delta, in the code, it compares (size_{i}-size_{i-delta})/size_{i-delta} |
|
int delta; |
|
//! prune the area which bigger than maxArea |
|
int maxArea; |
|
//! prune the area which smaller than minArea |
|
int minArea; |
|
//! prune the area have simliar size to its children |
|
float maxVariation; |
|
//! trace back to cut off mser with diversity < min_diversity |
|
float minDiversity; |
|
|
|
/////// the next few params for MSER of color image |
|
|
|
//! for color image, the evolution steps |
|
int maxEvolution; |
|
//! the area threshold to cause re-initialize |
|
double areaThreshold; |
|
//! ignore too small margin |
|
double minMargin; |
|
//! the aperture size for edge blur |
|
int edgeBlurSize; |
|
} CvMSERParams; |
|
|
|
CVAPI(CvMSERParams) cvMSERParams( int delta CV_DEFAULT(5), int min_area CV_DEFAULT(60), |
|
int max_area CV_DEFAULT(14400), float max_variation CV_DEFAULT(.25f), |
|
float min_diversity CV_DEFAULT(.2f), int max_evolution CV_DEFAULT(200), |
|
double area_threshold CV_DEFAULT(1.01), |
|
double min_margin CV_DEFAULT(.003), |
|
int edge_blur_size CV_DEFAULT(5) ); |
|
|
|
// Extracts the contours of Maximally Stable Extremal Regions |
|
CVAPI(void) cvExtractMSER( CvArr* _img, CvArr* _mask, CvSeq** contours, CvMemStorage* storage, CvMSERParams params ); |
|
|
|
|
|
typedef struct CvStarKeypoint |
|
{ |
|
CvPoint pt; |
|
int size; |
|
float response; |
|
} CvStarKeypoint; |
|
|
|
CV_INLINE CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response) |
|
{ |
|
CvStarKeypoint kpt; |
|
kpt.pt = pt; |
|
kpt.size = size; |
|
kpt.response = response; |
|
return kpt; |
|
} |
|
|
|
typedef struct CvStarDetectorParams |
|
{ |
|
int maxSize; |
|
int responseThreshold; |
|
int lineThresholdProjected; |
|
int lineThresholdBinarized; |
|
int suppressNonmaxSize; |
|
} CvStarDetectorParams; |
|
|
|
CV_INLINE CvStarDetectorParams cvStarDetectorParams( |
|
int maxSize CV_DEFAULT(45), |
|
int responseThreshold CV_DEFAULT(30), |
|
int lineThresholdProjected CV_DEFAULT(10), |
|
int lineThresholdBinarized CV_DEFAULT(8), |
|
int suppressNonmaxSize CV_DEFAULT(5)) |
|
{ |
|
CvStarDetectorParams params; |
|
params.maxSize = maxSize; |
|
params.responseThreshold = responseThreshold; |
|
params.lineThresholdProjected = lineThresholdProjected; |
|
params.lineThresholdBinarized = lineThresholdBinarized; |
|
params.suppressNonmaxSize = suppressNonmaxSize; |
|
|
|
return params; |
|
} |
|
|
|
CVAPI(CvSeq*) cvGetStarKeypoints( const CvArr* img, CvMemStorage* storage, |
|
CvStarDetectorParams params CV_DEFAULT(cvStarDetectorParams())); |
|
|
|
#ifdef __cplusplus |
|
} |
|
|
|
namespace cv |
|
{ |
|
struct CV_EXPORTS DefaultRngAuto |
|
{ |
|
const uint64 old_state; |
|
|
|
DefaultRngAuto() : old_state(theRNG().state) { theRNG().state = (uint64)-1; } |
|
~DefaultRngAuto() { theRNG().state = old_state; } |
|
|
|
DefaultRngAuto& operator=(const DefaultRngAuto&); |
|
}; |
|
|
|
|
|
// CvAffinePose: defines a parameterized affine transformation of an image patch. |
|
// An image patch is rotated on angle phi (in degrees), then scaled lambda1 times |
|
// along horizontal and lambda2 times along vertical direction, and then rotated again |
|
// on angle (theta - phi). |
|
class CV_EXPORTS CvAffinePose |
|
{ |
|
public: |
|
float phi; |
|
float theta; |
|
float lambda1; |
|
float lambda2; |
|
}; |
|
|
|
/*! |
|
The Keypoint Class |
|
|
|
The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as |
|
Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc. |
|
|
|
The keypoint is characterized by the 2D position, scale |
|
(proportional to the diameter of the neighborhood that needs to be taken into account), |
|
orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor |
|
(usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using |
|
cv::KDTree or another method. |
|
*/ |
|
class CV_EXPORTS_W_SIMPLE KeyPoint |
|
{ |
|
public: |
|
//! the default constructor |
|
CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {} |
|
//! the full constructor |
|
KeyPoint(Point2f _pt, float _size, float _angle=-1, |
|
float _response=0, int _octave=0, int _class_id=-1) |
|
: pt(_pt), size(_size), angle(_angle), |
|
response(_response), octave(_octave), class_id(_class_id) {} |
|
//! another form of the full constructor |
|
CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1, |
|
float _response=0, int _octave=0, int _class_id=-1) |
|
: pt(x, y), size(_size), angle(_angle), |
|
response(_response), octave(_octave), class_id(_class_id) {} |
|
|
|
size_t hash() const; |
|
|
|
//! converts vector of keypoints to vector of points |
|
static void convert(const std::vector<KeyPoint>& keypoints, |
|
CV_OUT std::vector<Point2f>& points2f, |
|
const std::vector<int>& keypointIndexes=std::vector<int>()); |
|
//! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation |
|
static void convert(const std::vector<Point2f>& points2f, |
|
CV_OUT std::vector<KeyPoint>& keypoints, |
|
float size=1, float response=1, int octave=0, int class_id=-1); |
|
|
|
//! computes overlap for pair of keypoints; |
|
//! overlap is a ratio between area of keypoint regions intersection and |
|
//! area of keypoint regions union (now keypoint region is circle) |
|
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); |
|
|
|
CV_PROP_RW Point2f pt; //!< coordinates of the keypoints |
|
CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood |
|
CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable) |
|
CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling |
|
CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted |
|
CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to) |
|
}; |
|
|
|
//! writes vector of keypoints to the file storage |
|
CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints); |
|
//! reads vector of keypoints from the specified file storage node |
|
CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints); |
|
|
|
/* |
|
* A class filters a vector of keypoints. |
|
* Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class, |
|
* it has only 4 needed by now static methods. |
|
*/ |
|
class CV_EXPORTS KeyPointsFilter |
|
{ |
|
public: |
|
KeyPointsFilter(){} |
|
|
|
/* |
|
* Remove keypoints within borderPixels of an image edge. |
|
*/ |
|
static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize ); |
|
/* |
|
* Remove keypoints of sizes out of range. |
|
*/ |
|
static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize, float maxSize=std::numeric_limits<float>::max() ); |
|
/* |
|
* Remove keypoints from some image by mask for pixels of this image. |
|
*/ |
|
static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask ); |
|
/* |
|
* Remove duplicated keypoints. |
|
*/ |
|
static void removeDuplicated( vector<KeyPoint>& keypoints ); |
|
}; |
|
|
|
/*! |
|
SIFT implementation. |
|
|
|
The class implements SIFT algorithm by D. Lowe. |
|
*/ |
|
|
|
class CV_EXPORTS SIFT |
|
{ |
|
public: |
|
struct CV_EXPORTS CommonParams |
|
{ |
|
static const int DEFAULT_NOCTAVES = 4; |
|
static const int DEFAULT_NOCTAVE_LAYERS = 3; |
|
static const int DEFAULT_FIRST_OCTAVE = -1; |
|
enum { FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 }; |
|
|
|
CommonParams(); |
|
CommonParams( int _nOctaves, int _nOctaveLayers, int /*_firstOctave*/, int /*_angleMode*/ ); |
|
CommonParams( int _nOctaves, int _nOctaveLayers ); |
|
int nOctaves, nOctaveLayers; |
|
int firstOctave; // it is not used now (firstOctave == 0 always) |
|
int angleMode; // it is not used now |
|
}; |
|
|
|
struct CV_EXPORTS DetectorParams |
|
{ |
|
static double GET_DEFAULT_THRESHOLD() { return 0.04; } |
|
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; } |
|
|
|
DetectorParams(); |
|
DetectorParams( double _threshold, double _edgeThreshold ); |
|
double threshold, edgeThreshold; |
|
}; |
|
|
|
struct CV_EXPORTS DescriptorParams |
|
{ |
|
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; } |
|
static const bool DEFAULT_IS_NORMALIZE = true; |
|
static const int DESCRIPTOR_SIZE = 128; |
|
|
|
DescriptorParams(); |
|
DescriptorParams( double _magnification, bool /*_isNormalize*/, bool _recalculateAngles ); |
|
DescriptorParams( bool _recalculateAngles ); |
|
double magnification; |
|
bool isNormalize; // it is not used now (true always) |
|
bool recalculateAngles; |
|
}; |
|
|
|
SIFT(); |
|
//! sift-detector constructor |
|
SIFT( double _threshold, double _edgeThreshold, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
//! sift-descriptor constructor |
|
SIFT( double _magnification, bool _isNormalize=true, |
|
bool _recalculateAngles = true, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
SIFT( const CommonParams& _commParams, |
|
const DetectorParams& _detectorParams = DetectorParams(), |
|
const DescriptorParams& _descriptorParams = DescriptorParams() ); |
|
|
|
//! returns the descriptor size in floats (128) |
|
int descriptorSize() const; |
|
//! finds the keypoints using SIFT algorithm |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const; |
|
//! finds the keypoints and computes descriptors for them using SIFT algorithm. |
|
//! Optionally it can compute descriptors for the user-provided keypoints |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints, |
|
Mat& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
|
|
CommonParams getCommonParams () const; |
|
DetectorParams getDetectorParams () const; |
|
DescriptorParams getDescriptorParams () const; |
|
|
|
protected: |
|
CommonParams commParams; |
|
DetectorParams detectorParams; |
|
DescriptorParams descriptorParams; |
|
}; |
|
|
|
|
|
/*! |
|
SURF implementation. |
|
|
|
The class implements SURF algorithm by H. Bay et al. |
|
*/ |
|
class CV_EXPORTS_W SURF : public CvSURFParams |
|
{ |
|
public: |
|
//! the default constructor |
|
CV_WRAP SURF(); |
|
//! the full constructor taking all the necessary parameters |
|
CV_WRAP SURF(double _hessianThreshold, int _nOctaves=4, |
|
int _nOctaveLayers=2, bool _extended=false, bool _upright=false); |
|
|
|
//! returns the descriptor size in float's (64 or 128) |
|
CV_WRAP int descriptorSize() const; |
|
//! finds the keypoints using fast hessian detector used in SURF |
|
CV_WRAP_AS(detect) void operator()(const Mat& img, const Mat& mask, |
|
CV_OUT vector<KeyPoint>& keypoints) const; |
|
//! finds the keypoints and computes their descriptors. Optionally it can compute descriptors for the user-provided keypoints |
|
CV_WRAP_AS(detect) void operator()(const Mat& img, const Mat& mask, |
|
CV_OUT vector<KeyPoint>& keypoints, |
|
CV_OUT vector<float>& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
}; |
|
|
|
/*! |
|
ORB implementation. |
|
*/ |
|
class CV_EXPORTS ORB |
|
{ |
|
public: |
|
|
|
/** the size of the signature in bytes */ |
|
enum { kBytes = 32 }; |
|
|
|
struct CV_EXPORTS CommonParams |
|
{ |
|
enum { DEFAULT_N_LEVELS = 3, DEFAULT_FIRST_LEVEL = 0}; |
|
|
|
/** default constructor */ |
|
CommonParams(float scale_factor = 1.2f, unsigned n_levels = DEFAULT_N_LEVELS, int edge_threshold = 31, |
|
unsigned first_level = DEFAULT_FIRST_LEVEL) : |
|
scale_factor_(scale_factor), n_levels_(n_levels), first_level_(first_level >= n_levels ? 0 : first_level), |
|
edge_threshold_(edge_threshold) |
|
{ |
|
// No other patch size is supported right now |
|
patch_size_ = 31; |
|
} |
|
void read(const FileNode& fn); |
|
void write(FileStorage& fs) const; |
|
|
|
/** Coefficient by which we divide the dimensions from one scale pyramid level to the next */ |
|
float scale_factor_; |
|
/** The number of levels in the scale pyramid */ |
|
unsigned n_levels_; |
|
/** The level at which the image is given |
|
* if 1, that means we will also look at the image scale_factor_ times bigger |
|
*/ |
|
unsigned first_level_; |
|
/** How far from the boundary the points should be */ |
|
int edge_threshold_; |
|
|
|
friend class ORB; |
|
protected: |
|
/** The size of the patch that will be used for orientation and comparisons */ |
|
int patch_size_; |
|
}; |
|
|
|
/** Constructor |
|
* @param n_features the number of desired features |
|
* @param detector_params parameters to use |
|
*/ |
|
ORB(size_t n_features = 500, const CommonParams & detector_params = CommonParams()); |
|
|
|
/** destructor to empty the patterns */ |
|
~ORB(); |
|
|
|
/** returns the descriptor size in bytes */ |
|
int descriptorSize() const; |
|
|
|
/** Compute the ORB features and descriptors on an image |
|
* @param img the image to compute the features and descriptors on |
|
* @param mask the mask to apply |
|
* @param keypoints the resulting keypoints |
|
*/ |
|
void |
|
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints); |
|
|
|
/** Compute the ORB features and descriptors on an image |
|
* @param img the image to compute the features and descriptors on |
|
* @param mask the mask to apply |
|
* @param keypoints the resulting keypoints |
|
* @param descriptors the resulting descriptors |
|
* @param useProvidedKeypoints if true, the keypoints are used as an input |
|
*/ |
|
void |
|
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, cv::Mat & descriptors, |
|
bool useProvidedKeypoints = false); |
|
|
|
private: |
|
/** The size of the patch used when comparing regions in the patterns */ |
|
static const int kKernelWidth = 5; |
|
|
|
/** Compute the ORB features and descriptors on an image |
|
* @param image the image to compute the features and descriptors on |
|
* @param mask the mask to apply |
|
* @param keypoints the resulting keypoints |
|
* @param descriptors the resulting descriptors |
|
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input |
|
* @param do_descriptors if true, also computes the descriptors |
|
*/ |
|
void |
|
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, cv::Mat & descriptors, |
|
bool do_keypoints, bool do_descriptors); |
|
|
|
/** Compute the ORB keypoints on an image |
|
* @param image_pyramid the image pyramid to compute the features and descriptors on |
|
* @param mask_pyramid the masks to apply at every level |
|
* @param keypoints the resulting keypoints, clustered per level |
|
*/ |
|
void computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid, |
|
std::vector<std::vector<cv::KeyPoint> >& keypoints) const; |
|
|
|
/** Compute the ORB keypoint orientations |
|
* @param image the image to compute the features and descriptors on |
|
* @param integral_image the integral image of the image (can be empty, but the computation will be slower) |
|
* @param level the scale at which we compute the orientation |
|
* @param keypoints the resulting keypoints |
|
*/ |
|
void |
|
computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned level, |
|
std::vector<cv::KeyPoint>& keypoints) const; |
|
|
|
/** Compute the ORB descriptors |
|
* @param image the image to compute the features and descriptors on |
|
* @param integral_image the integral image of the image (can be empty, but the computation will be slower) |
|
* @param level the scale at which we compute the orientation |
|
* @param keypoints the keypoints to use |
|
* @param descriptors the resulting descriptors |
|
*/ |
|
void |
|
computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned level, |
|
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const; |
|
|
|
/** Compute the integral image and upadte the cached values |
|
* @param image the image to compute the features and descriptors on |
|
* @param level the scale at which we compute the orientation |
|
* @param descriptors the resulting descriptors |
|
*/ |
|
void computeIntegralImage(const cv::Mat & image, unsigned level, cv::Mat &integral_image); |
|
|
|
/** Parameters tuning ORB */ |
|
CommonParams params_; |
|
|
|
/** size of the half patch used for orientation computation, see Rosin - 1999 - Measuring Corner Properties */ |
|
int half_patch_size_; |
|
|
|
/** pre-computed offsets used for the Harris verification, one vector per scale */ |
|
std::vector<std::vector<int> > orientation_horizontal_offsets_; |
|
std::vector<std::vector<int> > orientation_vertical_offsets_; |
|
|
|
/** The steps of the integral images for each scale */ |
|
std::vector<size_t> integral_image_steps_; |
|
|
|
/** The number of desired features per scale */ |
|
std::vector<size_t> n_features_per_level_; |
|
|
|
/** The overall number of desired features */ |
|
size_t n_features_; |
|
|
|
/** the end of a row in a circular patch */ |
|
std::vector<int> u_max_; |
|
|
|
/** The patterns for each level (the patterns are the same, but not their offset */ |
|
class OrbPatterns; |
|
std::vector<OrbPatterns*> patterns_; |
|
}; |
|
|
|
/*! |
|
Maximal Stable Extremal Regions class. |
|
|
|
The class implements MSER algorithm introduced by J. Matas. |
|
Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector, |
|
not the salient point detector. |
|
|
|
It returns the regions, each of those is encoded as a contour. |
|
*/ |
|
class CV_EXPORTS_W MSER : public CvMSERParams |
|
{ |
|
public: |
|
//! the default constructor |
|
CV_WRAP MSER(); |
|
//! the full constructor |
|
CV_WRAP MSER( int _delta, int _min_area, int _max_area, |
|
double _max_variation, double _min_diversity, |
|
int _max_evolution, double _area_threshold, |
|
double _min_margin, int _edge_blur_size ); |
|
//! the operator that extracts the MSERs from the image or the specific part of it |
|
CV_WRAP_AS(detect) void operator()( const Mat& image, |
|
CV_OUT vector<vector<Point> >& msers, const Mat& mask ) const; |
|
}; |
|
|
|
/*! |
|
The "Star" Detector. |
|
|
|
The class implements the keypoint detector introduced by K. Konolige. |
|
*/ |
|
class CV_EXPORTS_W StarDetector : public CvStarDetectorParams |
|
{ |
|
public: |
|
//! the default constructor |
|
CV_WRAP StarDetector(); |
|
//! the full constructor |
|
CV_WRAP StarDetector(int _maxSize, int _responseThreshold, |
|
int _lineThresholdProjected, |
|
int _lineThresholdBinarized, |
|
int _suppressNonmaxSize); |
|
//! finds the keypoints in the image |
|
CV_WRAP_AS(detect) void operator()(const Mat& image, |
|
CV_OUT vector<KeyPoint>& keypoints) const; |
|
}; |
|
|
|
//! detects corners using FAST algorithm by E. Rosten |
|
CV_EXPORTS void FAST( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, |
|
int threshold, bool nonmaxSupression=true ); |
|
|
|
/*! |
|
The Patch Generator class |
|
*/ |
|
class CV_EXPORTS PatchGenerator |
|
{ |
|
public: |
|
PatchGenerator(); |
|
PatchGenerator(double _backgroundMin, double _backgroundMax, |
|
double _noiseRange, bool _randomBlur=true, |
|
double _lambdaMin=0.6, double _lambdaMax=1.5, |
|
double _thetaMin=-CV_PI, double _thetaMax=CV_PI, |
|
double _phiMin=-CV_PI, double _phiMax=CV_PI ); |
|
void operator()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const; |
|
void operator()(const Mat& image, const Mat& transform, Mat& patch, |
|
Size patchSize, RNG& rng) const; |
|
void warpWholeImage(const Mat& image, Mat& matT, Mat& buf, |
|
CV_OUT Mat& warped, int border, RNG& rng) const; |
|
void generateRandomTransform(Point2f srcCenter, Point2f dstCenter, |
|
CV_OUT Mat& transform, RNG& rng, |
|
bool inverse=false) const; |
|
void setAffineParam(double lambda, double theta, double phi); |
|
|
|
double backgroundMin, backgroundMax; |
|
double noiseRange; |
|
bool randomBlur; |
|
double lambdaMin, lambdaMax; |
|
double thetaMin, thetaMax; |
|
double phiMin, phiMax; |
|
}; |
|
|
|
|
|
class CV_EXPORTS LDetector |
|
{ |
|
public: |
|
LDetector(); |
|
LDetector(int _radius, int _threshold, int _nOctaves, |
|
int _nViews, double _baseFeatureSize, double _clusteringDistance); |
|
void operator()(const Mat& image, |
|
CV_OUT vector<KeyPoint>& keypoints, |
|
int maxCount=0, bool scaleCoords=true) const; |
|
void operator()(const vector<Mat>& pyr, |
|
CV_OUT vector<KeyPoint>& keypoints, |
|
int maxCount=0, bool scaleCoords=true) const; |
|
void getMostStable2D(const Mat& image, CV_OUT vector<KeyPoint>& keypoints, |
|
int maxCount, const PatchGenerator& patchGenerator) const; |
|
void setVerbose(bool verbose); |
|
|
|
void read(const FileNode& node); |
|
void write(FileStorage& fs, const String& name=String()) const; |
|
|
|
int radius; |
|
int threshold; |
|
int nOctaves; |
|
int nViews; |
|
bool verbose; |
|
|
|
double baseFeatureSize; |
|
double clusteringDistance; |
|
}; |
|
|
|
typedef LDetector YAPE; |
|
|
|
class CV_EXPORTS FernClassifier |
|
{ |
|
public: |
|
FernClassifier(); |
|
FernClassifier(const FileNode& node); |
|
FernClassifier(const vector<vector<Point2f> >& points, |
|
const vector<Mat>& refimgs, |
|
const vector<vector<int> >& labels=vector<vector<int> >(), |
|
int _nclasses=0, int _patchSize=PATCH_SIZE, |
|
int _signatureSize=DEFAULT_SIGNATURE_SIZE, |
|
int _nstructs=DEFAULT_STRUCTS, |
|
int _structSize=DEFAULT_STRUCT_SIZE, |
|
int _nviews=DEFAULT_VIEWS, |
|
int _compressionMethod=COMPRESSION_NONE, |
|
const PatchGenerator& patchGenerator=PatchGenerator()); |
|
virtual ~FernClassifier(); |
|
virtual void read(const FileNode& n); |
|
virtual void write(FileStorage& fs, const String& name=String()) const; |
|
virtual void trainFromSingleView(const Mat& image, |
|
const vector<KeyPoint>& keypoints, |
|
int _patchSize=PATCH_SIZE, |
|
int _signatureSize=DEFAULT_SIGNATURE_SIZE, |
|
int _nstructs=DEFAULT_STRUCTS, |
|
int _structSize=DEFAULT_STRUCT_SIZE, |
|
int _nviews=DEFAULT_VIEWS, |
|
int _compressionMethod=COMPRESSION_NONE, |
|
const PatchGenerator& patchGenerator=PatchGenerator()); |
|
virtual void train(const vector<vector<Point2f> >& points, |
|
const vector<Mat>& refimgs, |
|
const vector<vector<int> >& labels=vector<vector<int> >(), |
|
int _nclasses=0, int _patchSize=PATCH_SIZE, |
|
int _signatureSize=DEFAULT_SIGNATURE_SIZE, |
|
int _nstructs=DEFAULT_STRUCTS, |
|
int _structSize=DEFAULT_STRUCT_SIZE, |
|
int _nviews=DEFAULT_VIEWS, |
|
int _compressionMethod=COMPRESSION_NONE, |
|
const PatchGenerator& patchGenerator=PatchGenerator()); |
|
virtual int operator()(const Mat& img, Point2f kpt, vector<float>& signature) const; |
|
virtual int operator()(const Mat& patch, vector<float>& signature) const; |
|
virtual void clear(); |
|
virtual bool empty() const; |
|
void setVerbose(bool verbose); |
|
|
|
int getClassCount() const; |
|
int getStructCount() const; |
|
int getStructSize() const; |
|
int getSignatureSize() const; |
|
int getCompressionMethod() const; |
|
Size getPatchSize() const; |
|
|
|
struct Feature |
|
{ |
|
uchar x1, y1, x2, y2; |
|
Feature() : x1(0), y1(0), x2(0), y2(0) {} |
|
Feature(int _x1, int _y1, int _x2, int _y2) |
|
: x1((uchar)_x1), y1((uchar)_y1), x2((uchar)_x2), y2((uchar)_y2) |
|
{} |
|
template<typename _Tp> bool operator ()(const Mat_<_Tp>& patch) const |
|
{ return patch(y1,x1) > patch(y2, x2); } |
|
}; |
|
|
|
enum |
|
{ |
|
PATCH_SIZE = 31, |
|
DEFAULT_STRUCTS = 50, |
|
DEFAULT_STRUCT_SIZE = 9, |
|
DEFAULT_VIEWS = 5000, |
|
DEFAULT_SIGNATURE_SIZE = 176, |
|
COMPRESSION_NONE = 0, |
|
COMPRESSION_RANDOM_PROJ = 1, |
|
COMPRESSION_PCA = 2, |
|
DEFAULT_COMPRESSION_METHOD = COMPRESSION_NONE |
|
}; |
|
|
|
protected: |
|
virtual void prepare(int _nclasses, int _patchSize, int _signatureSize, |
|
int _nstructs, int _structSize, |
|
int _nviews, int _compressionMethod); |
|
virtual void finalize(RNG& rng); |
|
virtual int getLeaf(int fidx, const Mat& patch) const; |
|
|
|
bool verbose; |
|
int nstructs; |
|
int structSize; |
|
int nclasses; |
|
int signatureSize; |
|
int compressionMethod; |
|
int leavesPerStruct; |
|
Size patchSize; |
|
vector<Feature> features; |
|
vector<int> classCounters; |
|
vector<float> posteriors; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Calonder Classifier * |
|
\****************************************************************************************/ |
|
|
|
struct RTreeNode; |
|
|
|
struct CV_EXPORTS BaseKeypoint |
|
{ |
|
int x; |
|
int y; |
|
IplImage* image; |
|
|
|
BaseKeypoint() |
|
: x(0), y(0), image(NULL) |
|
{} |
|
|
|
BaseKeypoint(int x, int y, IplImage* image) |
|
: x(x), y(y), image(image) |
|
{} |
|
}; |
|
|
|
class CV_EXPORTS RandomizedTree |
|
{ |
|
public: |
|
friend class RTreeClassifier; |
|
|
|
static const uchar PATCH_SIZE = 32; |
|
static const int DEFAULT_DEPTH = 9; |
|
static const int DEFAULT_VIEWS = 5000; |
|
static const size_t DEFAULT_REDUCED_NUM_DIM = 176; |
|
static float GET_LOWER_QUANT_PERC() { return .03f; } |
|
static float GET_UPPER_QUANT_PERC() { return .92f; } |
|
|
|
RandomizedTree(); |
|
~RandomizedTree(); |
|
|
|
void train(std::vector<BaseKeypoint> const& base_set, RNG &rng, |
|
int depth, int views, size_t reduced_num_dim, int num_quant_bits); |
|
void train(std::vector<BaseKeypoint> const& base_set, RNG &rng, |
|
PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim, |
|
int num_quant_bits); |
|
|
|
// following two funcs are EXPERIMENTAL (do not use unless you know exactly what you do) |
|
static void quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode=0); |
|
static void quantizeVector(float *src, int dim, int N, float bnds[2], uchar *dst); |
|
|
|
// patch_data must be a 32x32 array (no row padding) |
|
float* getPosterior(uchar* patch_data); |
|
const float* getPosterior(uchar* patch_data) const; |
|
uchar* getPosterior2(uchar* patch_data); |
|
const uchar* getPosterior2(uchar* patch_data) const; |
|
|
|
void read(const char* file_name, int num_quant_bits); |
|
void read(std::istream &is, int num_quant_bits); |
|
void write(const char* file_name) const; |
|
void write(std::ostream &os) const; |
|
|
|
int classes() { return classes_; } |
|
int depth() { return depth_; } |
|
|
|
//void setKeepFloatPosteriors(bool b) { keep_float_posteriors_ = b; } |
|
void discardFloatPosteriors() { freePosteriors(1); } |
|
|
|
inline void applyQuantization(int num_quant_bits) { makePosteriors2(num_quant_bits); } |
|
|
|
// debug |
|
void savePosteriors(std::string url, bool append=false); |
|
void savePosteriors2(std::string url, bool append=false); |
|
|
|
private: |
|
int classes_; |
|
int depth_; |
|
int num_leaves_; |
|
std::vector<RTreeNode> nodes_; |
|
float **posteriors_; // 16-bytes aligned posteriors |
|
uchar **posteriors2_; // 16-bytes aligned posteriors |
|
std::vector<int> leaf_counts_; |
|
|
|
void createNodes(int num_nodes, RNG &rng); |
|
void allocPosteriorsAligned(int num_leaves, int num_classes); |
|
void freePosteriors(int which); // which: 1=posteriors_, 2=posteriors2_, 3=both |
|
void init(int classes, int depth, RNG &rng); |
|
void addExample(int class_id, uchar* patch_data); |
|
void finalize(size_t reduced_num_dim, int num_quant_bits); |
|
int getIndex(uchar* patch_data) const; |
|
inline float* getPosteriorByIndex(int index); |
|
inline const float* getPosteriorByIndex(int index) const; |
|
inline uchar* getPosteriorByIndex2(int index); |
|
inline const uchar* getPosteriorByIndex2(int index) const; |
|
//void makeRandomMeasMatrix(float *cs_phi, PHI_DISTR_TYPE dt, size_t reduced_num_dim); |
|
void convertPosteriorsToChar(); |
|
void makePosteriors2(int num_quant_bits); |
|
void compressLeaves(size_t reduced_num_dim); |
|
void estimateQuantPercForPosteriors(float perc[2]); |
|
}; |
|
|
|
|
|
inline uchar* getData(IplImage* image) |
|
{ |
|
return reinterpret_cast<uchar*>(image->imageData); |
|
} |
|
|
|
inline float* RandomizedTree::getPosteriorByIndex(int index) |
|
{ |
|
return const_cast<float*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex(index)); |
|
} |
|
|
|
inline const float* RandomizedTree::getPosteriorByIndex(int index) const |
|
{ |
|
return posteriors_[index]; |
|
} |
|
|
|
inline uchar* RandomizedTree::getPosteriorByIndex2(int index) |
|
{ |
|
return const_cast<uchar*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex2(index)); |
|
} |
|
|
|
inline const uchar* RandomizedTree::getPosteriorByIndex2(int index) const |
|
{ |
|
return posteriors2_[index]; |
|
} |
|
|
|
struct CV_EXPORTS RTreeNode |
|
{ |
|
short offset1, offset2; |
|
|
|
RTreeNode() {} |
|
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2) |
|
: offset1(y1*RandomizedTree::PATCH_SIZE + x1), |
|
offset2(y2*RandomizedTree::PATCH_SIZE + x2) |
|
{} |
|
|
|
//! Left child on 0, right child on 1 |
|
inline bool operator() (uchar* patch_data) const |
|
{ |
|
return patch_data[offset1] > patch_data[offset2]; |
|
} |
|
}; |
|
|
|
class CV_EXPORTS RTreeClassifier |
|
{ |
|
public: |
|
static const int DEFAULT_TREES = 48; |
|
static const size_t DEFAULT_NUM_QUANT_BITS = 4; |
|
|
|
RTreeClassifier(); |
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, |
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
|
int depth = RandomizedTree::DEFAULT_DEPTH, |
|
int views = RandomizedTree::DEFAULT_VIEWS, |
|
size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM, |
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS); |
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, |
|
PatchGenerator &make_patch, |
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
|
int depth = RandomizedTree::DEFAULT_DEPTH, |
|
int views = RandomizedTree::DEFAULT_VIEWS, |
|
size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM, |
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS); |
|
|
|
// sig must point to a memory block of at least classes()*sizeof(float|uchar) bytes |
|
void getSignature(IplImage *patch, uchar *sig) const; |
|
void getSignature(IplImage *patch, float *sig) const; |
|
void getSparseSignature(IplImage *patch, float *sig, float thresh) const; |
|
// TODO: deprecated in favor of getSignature overload, remove |
|
void getFloatSignature(IplImage *patch, float *sig) const { getSignature(patch, sig); } |
|
|
|
static int countNonZeroElements(float *vec, int n, double tol=1e-10); |
|
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, int sig_len=176); |
|
static inline uchar* safeSignatureAlloc(int num_sig=1, int sig_len=176); |
|
|
|
inline int classes() const { return classes_; } |
|
inline int original_num_classes() const { return original_num_classes_; } |
|
|
|
void setQuantization(int num_quant_bits); |
|
void discardFloatPosteriors(); |
|
|
|
void read(const char* file_name); |
|
void read(std::istream &is); |
|
void write(const char* file_name) const; |
|
void write(std::ostream &os) const; |
|
|
|
// experimental and debug |
|
void saveAllFloatPosteriors(std::string file_url); |
|
void saveAllBytePosteriors(std::string file_url); |
|
void setFloatPosteriorsFromTextfile_176(std::string url); |
|
float countZeroElements(); |
|
|
|
std::vector<RandomizedTree> trees_; |
|
|
|
private: |
|
int classes_; |
|
int num_quant_bits_; |
|
mutable uchar **posteriors_; |
|
mutable unsigned short *ptemp_; |
|
int original_num_classes_; |
|
bool keep_floats_; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* One-Way Descriptor * |
|
\****************************************************************************************/ |
|
|
|
class CV_EXPORTS OneWayDescriptor |
|
{ |
|
public: |
|
OneWayDescriptor(); |
|
~OneWayDescriptor(); |
|
|
|
// allocates memory for given descriptor parameters |
|
void Allocate(int pose_count, CvSize size, int nChannels); |
|
|
|
// GenerateSamples: generates affine transformed patches with averaging them over small transformation variations. |
|
// If external poses and transforms were specified, uses them instead of generating random ones |
|
// - pose_count: the number of poses to be generated |
|
// - frontal: the input patch (can be a roi in a larger image) |
|
// - norm: if nonzero, normalizes the output patch so that the sum of pixel intensities is 1 |
|
void GenerateSamples(int pose_count, IplImage* frontal, int norm = 0); |
|
|
|
// GenerateSamplesFast: generates affine transformed patches with averaging them over small transformation variations. |
|
// Uses precalculated transformed pca components. |
|
// - frontal: the input patch (can be a roi in a larger image) |
|
// - pca_hr_avg: pca average vector |
|
// - pca_hr_eigenvectors: pca eigenvectors |
|
// - pca_descriptors: an array of precomputed descriptors of pca components containing their affine transformations |
|
// pca_descriptors[0] corresponds to the average, pca_descriptors[1]-pca_descriptors[pca_dim] correspond to eigenvectors |
|
void GenerateSamplesFast(IplImage* frontal, CvMat* pca_hr_avg, |
|
CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors); |
|
|
|
// sets the poses and corresponding transforms |
|
void SetTransforms(CvAffinePose* poses, CvMat** transforms); |
|
|
|
// Initialize: builds a descriptor. |
|
// - pose_count: the number of poses to build. If poses were set externally, uses them rather than generating random ones |
|
// - frontal: input patch. Can be a roi in a larger image |
|
// - feature_name: the feature name to be associated with the descriptor |
|
// - norm: if 1, the affine transformed patches are normalized so that their sum is 1 |
|
void Initialize(int pose_count, IplImage* frontal, const char* feature_name = 0, int norm = 0); |
|
|
|
// InitializeFast: builds a descriptor using precomputed descriptors of pca components |
|
// - pose_count: the number of poses to build |
|
// - frontal: input patch. Can be a roi in a larger image |
|
// - feature_name: the feature name to be associated with the descriptor |
|
// - pca_hr_avg: average vector for PCA |
|
// - pca_hr_eigenvectors: PCA eigenvectors (one vector per row) |
|
// - pca_descriptors: precomputed descriptors of PCA components, the first descriptor for the average vector |
|
// followed by the descriptors for eigenvectors |
|
void InitializeFast(int pose_count, IplImage* frontal, const char* feature_name, |
|
CvMat* pca_hr_avg, CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors); |
|
|
|
// ProjectPCASample: unwarps an image patch into a vector and projects it into PCA space |
|
// - patch: input image patch |
|
// - avg: PCA average vector |
|
// - eigenvectors: PCA eigenvectors, one per row |
|
// - pca_coeffs: output PCA coefficients |
|
void ProjectPCASample(IplImage* patch, CvMat* avg, CvMat* eigenvectors, CvMat* pca_coeffs) const; |
|
|
|
// InitializePCACoeffs: projects all warped patches into PCA space |
|
// - avg: PCA average vector |
|
// - eigenvectors: PCA eigenvectors, one per row |
|
void InitializePCACoeffs(CvMat* avg, CvMat* eigenvectors); |
|
|
|
// EstimatePose: finds the closest match between an input patch and a set of patches with different poses |
|
// - patch: input image patch |
|
// - pose_idx: the output index of the closest pose |
|
// - distance: the distance to the closest pose (L2 distance) |
|
void EstimatePose(IplImage* patch, int& pose_idx, float& distance) const; |
|
|
|
// EstimatePosePCA: finds the closest match between an input patch and a set of patches with different poses. |
|
// The distance between patches is computed in PCA space |
|
// - patch: input image patch |
|
// - pose_idx: the output index of the closest pose |
|
// - distance: distance to the closest pose (L2 distance in PCA space) |
|
// - avg: PCA average vector. If 0, matching without PCA is used |
|
// - eigenvectors: PCA eigenvectors, one per row |
|
void EstimatePosePCA(CvArr* patch, int& pose_idx, float& distance, CvMat* avg, CvMat* eigenvalues) const; |
|
|
|
// GetPatchSize: returns the size of each image patch after warping (2 times smaller than the input patch) |
|
CvSize GetPatchSize() const |
|
{ |
|
return m_patch_size; |
|
} |
|
|
|
// GetInputPatchSize: returns the required size of the patch that the descriptor is built from |
|
// (2 time larger than the patch after warping) |
|
CvSize GetInputPatchSize() const |
|
{ |
|
return cvSize(m_patch_size.width*2, m_patch_size.height*2); |
|
} |
|
|
|
// GetPatch: returns a patch corresponding to specified pose index |
|
// - index: pose index |
|
// - return value: the patch corresponding to specified pose index |
|
IplImage* GetPatch(int index); |
|
|
|
// GetPose: returns a pose corresponding to specified pose index |
|
// - index: pose index |
|
// - return value: the pose corresponding to specified pose index |
|
CvAffinePose GetPose(int index) const; |
|
|
|
// Save: saves all patches with different poses to a specified path |
|
void Save(const char* path); |
|
|
|
// ReadByName: reads a descriptor from a file storage |
|
// - fs: file storage |
|
// - parent: parent node |
|
// - name: node name |
|
// - return value: 1 if succeeded, 0 otherwise |
|
int ReadByName(CvFileStorage* fs, CvFileNode* parent, const char* name); |
|
|
|
// ReadByName: reads a descriptor from a file node |
|
// - parent: parent node |
|
// - name: node name |
|
// - return value: 1 if succeeded, 0 otherwise |
|
int ReadByName(const FileNode &parent, const char* name); |
|
|
|
// Write: writes a descriptor into a file storage |
|
// - fs: file storage |
|
// - name: node name |
|
void Write(CvFileStorage* fs, const char* name); |
|
|
|
// GetFeatureName: returns a name corresponding to a feature |
|
const char* GetFeatureName() const; |
|
|
|
// GetCenter: returns the center of the feature |
|
CvPoint GetCenter() const; |
|
|
|
void SetPCADimHigh(int pca_dim_high) {m_pca_dim_high = pca_dim_high;}; |
|
void SetPCADimLow(int pca_dim_low) {m_pca_dim_low = pca_dim_low;}; |
|
|
|
int GetPCADimLow() const; |
|
int GetPCADimHigh() const; |
|
|
|
CvMat** GetPCACoeffs() const {return m_pca_coeffs;} |
|
|
|
protected: |
|
int m_pose_count; // the number of poses |
|
CvSize m_patch_size; // size of each image |
|
IplImage** m_samples; // an array of length m_pose_count containing the patch in different poses |
|
IplImage* m_input_patch; |
|
IplImage* m_train_patch; |
|
CvMat** m_pca_coeffs; // an array of length m_pose_count containing pca decomposition of the patch in different poses |
|
CvAffinePose* m_affine_poses; // an array of poses |
|
CvMat** m_transforms; // an array of affine transforms corresponding to poses |
|
|
|
string m_feature_name; // the name of the feature associated with the descriptor |
|
CvPoint m_center; // the coordinates of the feature (the center of the input image ROI) |
|
|
|
int m_pca_dim_high; // the number of descriptor pca components to use for generating affine poses |
|
int m_pca_dim_low; // the number of pca components to use for comparison |
|
}; |
|
|
|
|
|
// OneWayDescriptorBase: encapsulates functionality for training/loading a set of one way descriptors |
|
// and finding the nearest closest descriptor to an input feature |
|
class CV_EXPORTS OneWayDescriptorBase |
|
{ |
|
public: |
|
|
|
// creates an instance of OneWayDescriptor from a set of training files |
|
// - patch_size: size of the input (large) patch |
|
// - pose_count: the number of poses to generate for each descriptor |
|
// - train_path: path to training files |
|
// - pca_config: the name of the file that contains PCA for small patches (2 times smaller |
|
// than patch_size each dimension |
|
// - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size) |
|
// - pca_desc_config: the name of the file that contains descriptors of PCA components |
|
OneWayDescriptorBase(CvSize patch_size, int pose_count, const char* train_path = 0, const char* pca_config = 0, |
|
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1, |
|
int pca_dim_high = 100, int pca_dim_low = 100); |
|
|
|
OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename, const string &train_path = string(), const string &images_list = string(), |
|
float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1, |
|
int pca_dim_high = 100, int pca_dim_low = 100); |
|
|
|
|
|
virtual ~OneWayDescriptorBase(); |
|
void clear (); |
|
|
|
|
|
// Allocate: allocates memory for a given number of descriptors |
|
void Allocate(int train_feature_count); |
|
|
|
// AllocatePCADescriptors: allocates memory for pca descriptors |
|
void AllocatePCADescriptors(); |
|
|
|
// returns patch size |
|
CvSize GetPatchSize() const {return m_patch_size;}; |
|
// returns the number of poses for each descriptor |
|
int GetPoseCount() const {return m_pose_count;}; |
|
|
|
// returns the number of pyramid levels |
|
int GetPyrLevels() const {return m_pyr_levels;}; |
|
|
|
// returns the number of descriptors |
|
int GetDescriptorCount() const {return m_train_feature_count;}; |
|
|
|
// CreateDescriptorsFromImage: creates descriptors for each of the input features |
|
// - src: input image |
|
// - features: input features |
|
// - pyr_levels: the number of pyramid levels |
|
void CreateDescriptorsFromImage(IplImage* src, const std::vector<cv::KeyPoint>& features); |
|
|
|
// CreatePCADescriptors: generates descriptors for PCA components, needed for fast generation of feature descriptors |
|
void CreatePCADescriptors(); |
|
|
|
// returns a feature descriptor by feature index |
|
const OneWayDescriptor* GetDescriptor(int desc_idx) const {return &m_descriptors[desc_idx];}; |
|
|
|
// FindDescriptor: finds the closest descriptor |
|
// - patch: input image patch |
|
// - desc_idx: output index of the closest descriptor to the input patch |
|
// - pose_idx: output index of the closest pose of the closest descriptor to the input patch |
|
// - distance: distance from the input patch to the closest feature pose |
|
// - _scales: scales of the input patch for each descriptor |
|
// - scale_ranges: input scales variation (float[2]) |
|
void FindDescriptor(IplImage* patch, int& desc_idx, int& pose_idx, float& distance, float* _scale = 0, float* scale_ranges = 0) const; |
|
|
|
// - patch: input image patch |
|
// - n: number of the closest indexes |
|
// - desc_idxs: output indexes of the closest descriptor to the input patch (n) |
|
// - pose_idx: output indexes of the closest pose of the closest descriptor to the input patch (n) |
|
// - distances: distance from the input patch to the closest feature pose (n) |
|
// - _scales: scales of the input patch |
|
// - scale_ranges: input scales variation (float[2]) |
|
void FindDescriptor(IplImage* patch, int n, std::vector<int>& desc_idxs, std::vector<int>& pose_idxs, |
|
std::vector<float>& distances, std::vector<float>& _scales, float* scale_ranges = 0) const; |
|
|
|
// FindDescriptor: finds the closest descriptor |
|
// - src: input image |
|
// - pt: center of the feature |
|
// - desc_idx: output index of the closest descriptor to the input patch |
|
// - pose_idx: output index of the closest pose of the closest descriptor to the input patch |
|
// - distance: distance from the input patch to the closest feature pose |
|
void FindDescriptor(IplImage* src, cv::Point2f pt, int& desc_idx, int& pose_idx, float& distance) const; |
|
|
|
// InitializePoses: generates random poses |
|
void InitializePoses(); |
|
|
|
// InitializeTransformsFromPoses: generates 2x3 affine matrices from poses (initializes m_transforms) |
|
void InitializeTransformsFromPoses(); |
|
|
|
// InitializePoseTransforms: subsequently calls InitializePoses and InitializeTransformsFromPoses |
|
void InitializePoseTransforms(); |
|
|
|
// InitializeDescriptor: initializes a descriptor |
|
// - desc_idx: descriptor index |
|
// - train_image: image patch (ROI is supported) |
|
// - feature_label: feature textual label |
|
void InitializeDescriptor(int desc_idx, IplImage* train_image, const char* feature_label); |
|
|
|
void InitializeDescriptor(int desc_idx, IplImage* train_image, const cv::KeyPoint& keypoint, const char* feature_label); |
|
|
|
// InitializeDescriptors: load features from an image and create descriptors for each of them |
|
void InitializeDescriptors(IplImage* train_image, const vector<cv::KeyPoint>& features, |
|
const char* feature_label = "", int desc_start_idx = 0); |
|
|
|
// Write: writes this object to a file storage |
|
// - fs: output filestorage |
|
void Write (FileStorage &fs) const; |
|
|
|
// Read: reads OneWayDescriptorBase object from a file node |
|
// - fn: input file node |
|
void Read (const FileNode &fn); |
|
|
|
// LoadPCADescriptors: loads PCA descriptors from a file |
|
// - filename: input filename |
|
int LoadPCADescriptors(const char* filename); |
|
|
|
// LoadPCADescriptors: loads PCA descriptors from a file node |
|
// - fn: input file node |
|
int LoadPCADescriptors(const FileNode &fn); |
|
|
|
// SavePCADescriptors: saves PCA descriptors to a file |
|
// - filename: output filename |
|
void SavePCADescriptors(const char* filename); |
|
|
|
// SavePCADescriptors: saves PCA descriptors to a file storage |
|
// - fs: output file storage |
|
void SavePCADescriptors(CvFileStorage* fs) const; |
|
|
|
// GeneratePCA: calculate and save PCA components and descriptors |
|
// - img_path: path to training PCA images directory |
|
// - images_list: filename with filenames of training PCA images |
|
void GeneratePCA(const char* img_path, const char* images_list, int pose_count=500); |
|
|
|
// SetPCAHigh: sets the high resolution pca matrices (copied to internal structures) |
|
void SetPCAHigh(CvMat* avg, CvMat* eigenvectors); |
|
|
|
// SetPCALow: sets the low resolution pca matrices (copied to internal structures) |
|
void SetPCALow(CvMat* avg, CvMat* eigenvectors); |
|
|
|
int GetLowPCA(CvMat** avg, CvMat** eigenvectors) |
|
{ |
|
*avg = m_pca_avg; |
|
*eigenvectors = m_pca_eigenvectors; |
|
return m_pca_dim_low; |
|
}; |
|
|
|
int GetPCADimLow() const {return m_pca_dim_low;}; |
|
int GetPCADimHigh() const {return m_pca_dim_high;}; |
|
|
|
void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree |
|
|
|
// GetPCAFilename: get default PCA filename |
|
static string GetPCAFilename () { return "pca.yml"; } |
|
|
|
virtual bool empty() const { return m_train_feature_count <= 0 ? true : false; } |
|
|
|
protected: |
|
CvSize m_patch_size; // patch size |
|
int m_pose_count; // the number of poses for each descriptor |
|
int m_train_feature_count; // the number of the training features |
|
OneWayDescriptor* m_descriptors; // array of train feature descriptors |
|
CvMat* m_pca_avg; // PCA average Vector for small patches |
|
CvMat* m_pca_eigenvectors; // PCA eigenvectors for small patches |
|
CvMat* m_pca_hr_avg; // PCA average Vector for large patches |
|
CvMat* m_pca_hr_eigenvectors; // PCA eigenvectors for large patches |
|
OneWayDescriptor* m_pca_descriptors; // an array of PCA descriptors |
|
|
|
cv::flann::Index* m_pca_descriptors_tree; |
|
CvMat* m_pca_descriptors_matrix; |
|
|
|
CvAffinePose* m_poses; // array of poses |
|
CvMat** m_transforms; // array of affine transformations corresponding to poses |
|
|
|
int m_pca_dim_high; |
|
int m_pca_dim_low; |
|
|
|
int m_pyr_levels; |
|
float scale_min; |
|
float scale_max; |
|
float scale_step; |
|
|
|
// SavePCAall: saves PCA components and descriptors to a file storage |
|
// - fs: output file storage |
|
void SavePCAall (FileStorage &fs) const; |
|
|
|
// LoadPCAall: loads PCA components and descriptors from a file node |
|
// - fn: input file node |
|
void LoadPCAall (const FileNode &fn); |
|
}; |
|
|
|
class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase |
|
{ |
|
public: |
|
// creates an instance of OneWayDescriptorObject from a set of training files |
|
// - patch_size: size of the input (large) patch |
|
// - pose_count: the number of poses to generate for each descriptor |
|
// - train_path: path to training files |
|
// - pca_config: the name of the file that contains PCA for small patches (2 times smaller |
|
// than patch_size each dimension |
|
// - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size) |
|
// - pca_desc_config: the name of the file that contains descriptors of PCA components |
|
OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config, |
|
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1); |
|
|
|
OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename, |
|
const string &train_path = string (), const string &images_list = string (), |
|
float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1); |
|
|
|
|
|
virtual ~OneWayDescriptorObject(); |
|
|
|
// Allocate: allocates memory for a given number of features |
|
// - train_feature_count: the total number of features |
|
// - object_feature_count: the number of features extracted from the object |
|
void Allocate(int train_feature_count, int object_feature_count); |
|
|
|
|
|
void SetLabeledFeatures(const vector<cv::KeyPoint>& features) {m_train_features = features;}; |
|
vector<cv::KeyPoint>& GetLabeledFeatures() {return m_train_features;}; |
|
const vector<cv::KeyPoint>& GetLabeledFeatures() const {return m_train_features;}; |
|
vector<cv::KeyPoint> _GetLabeledFeatures() const; |
|
|
|
// IsDescriptorObject: returns 1 if descriptor with specified index is positive, otherwise 0 |
|
int IsDescriptorObject(int desc_idx) const; |
|
|
|
// MatchPointToPart: returns the part number of a feature if it matches one of the object parts, otherwise -1 |
|
int MatchPointToPart(CvPoint pt) const; |
|
|
|
// GetDescriptorPart: returns the part number of the feature corresponding to a specified descriptor |
|
// - desc_idx: descriptor index |
|
int GetDescriptorPart(int desc_idx) const; |
|
|
|
|
|
void InitializeObjectDescriptors(IplImage* train_image, const vector<cv::KeyPoint>& features, |
|
const char* feature_label, int desc_start_idx = 0, float scale = 1.0f, |
|
int is_background = 0); |
|
|
|
// GetObjectFeatureCount: returns the number of object features |
|
int GetObjectFeatureCount() const {return m_object_feature_count;}; |
|
|
|
protected: |
|
int* m_part_id; // contains part id for each of object descriptors |
|
vector<cv::KeyPoint> m_train_features; // train features |
|
int m_object_feature_count; // the number of the positive features |
|
|
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* FeatureDetector * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* Abstract base class for 2D image feature detectors. |
|
*/ |
|
class CV_EXPORTS_W FeatureDetector |
|
{ |
|
public: |
|
virtual ~FeatureDetector(); |
|
|
|
/* |
|
* Detect keypoints in an image. |
|
* image The image. |
|
* keypoints The detected keypoints. |
|
* mask Mask specifying where to look for keypoints (optional). Must be a char |
|
* matrix with non-zero values in the region of interest. |
|
*/ |
|
CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
/* |
|
* Detect keypoints in an image set. |
|
* images Image collection. |
|
* keypoints Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i]. |
|
* masks Masks for image set. masks[i] is a mask for images[i]. |
|
*/ |
|
void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const; |
|
|
|
// Read detector object from a file node. |
|
virtual void read( const FileNode& ); |
|
// Read detector object from a file node. |
|
virtual void write( FileStorage& ) const; |
|
|
|
// Return true if detector object is empty |
|
CV_WRAP virtual bool empty() const; |
|
|
|
// Create feature detector by detector name. |
|
CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType ); |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0; |
|
|
|
/* |
|
* Remove keypoints that are not in the mask. |
|
* Helper function, useful when wrapping a library call for keypoint detection that |
|
* does not support a mask argument. |
|
*/ |
|
static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints ); |
|
}; |
|
|
|
class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
int threshold; |
|
bool nonmaxSuppression; |
|
}; |
|
|
|
|
|
class CV_EXPORTS GoodFeaturesToTrackDetector : public FeatureDetector |
|
{ |
|
public: |
|
class CV_EXPORTS Params |
|
{ |
|
public: |
|
Params( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1., |
|
int blockSize=3, bool useHarrisDetector=false, double k=0.04 ); |
|
void read( const FileNode& fn ); |
|
void write( FileStorage& fs ) const; |
|
|
|
int maxCorners; |
|
double qualityLevel; |
|
double minDistance; |
|
int blockSize; |
|
bool useHarrisDetector; |
|
double k; |
|
}; |
|
|
|
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=GoodFeaturesToTrackDetector::Params() ); |
|
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel, double minDistance, |
|
int blockSize=3, bool useHarrisDetector=false, double k=0.04 ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
Params params; |
|
}; |
|
|
|
class CV_EXPORTS MserFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
MserFeatureDetector( CvMSERParams params=cvMSERParams() ); |
|
MserFeatureDetector( int delta, int minArea, int maxArea, double maxVariation, double minDiversity, |
|
int maxEvolution, double areaThreshold, double minMargin, int edgeBlurSize ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
MSER mser; |
|
}; |
|
|
|
class CV_EXPORTS_W StarFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
StarFeatureDetector( const CvStarDetectorParams& params=cvStarDetectorParams() ); |
|
CV_WRAP StarFeatureDetector( int maxSize, int responseThreshold=30, int lineThresholdProjected = 10, |
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
StarDetector star; |
|
}; |
|
|
|
class CV_EXPORTS SiftFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
SiftFeatureDetector( const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(), |
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() ); |
|
SiftFeatureDetector( double threshold, double edgeThreshold, |
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, |
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
SIFT sift; |
|
}; |
|
|
|
class CV_EXPORTS SurfFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
SurfFeatureDetector( double hessianThreshold=400., int octaves=3, int octaveLayers=4, bool upright=false ); |
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
SURF surf; |
|
}; |
|
|
|
/** Feature detector for the ORB feature |
|
* Basically fast followed by a Harris check |
|
*/ |
|
class CV_EXPORTS OrbFeatureDetector : public cv::FeatureDetector |
|
{ |
|
public: |
|
/** Default constructor |
|
* @param n_features the number of desired features |
|
* @param params parameters to use |
|
*/ |
|
OrbFeatureDetector(size_t n_features = 700, ORB::CommonParams params = ORB::CommonParams()); |
|
|
|
virtual void read(const cv::FileNode&); |
|
virtual void write(cv::FileStorage&) const; |
|
|
|
protected: |
|
virtual void |
|
detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask = cv::Mat()) const; |
|
private: |
|
/** the ORB object we use for the computations */ |
|
mutable ORB orb_; |
|
/** The parameters used */ |
|
ORB::CommonParams params_; |
|
/** the number of features that need to be retrieved */ |
|
unsigned n_features_; |
|
}; |
|
|
|
class CV_EXPORTS SimpleBlobDetector : public cv::FeatureDetector |
|
{ |
|
public: |
|
struct CV_EXPORTS Params |
|
{ |
|
Params(); |
|
float thresholdStep; |
|
float minThreshold; |
|
float maxThreshold; |
|
size_t minRepeatability; |
|
float minDistBetweenBlobs; |
|
|
|
bool filterByColor; |
|
uchar blobColor; |
|
|
|
bool filterByArea; |
|
float minArea, maxArea; |
|
|
|
bool filterByCircularity; |
|
float minCircularity, maxCircularity; |
|
|
|
bool filterByInertia; |
|
float minInertiaRatio, maxInertiaRatio; |
|
|
|
bool filterByConvexity; |
|
float minConvexity, maxConvexity; |
|
|
|
void read( const FileNode& fn ); |
|
void write( FileStorage& fs ) const; |
|
}; |
|
|
|
SimpleBlobDetector(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params()); |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
struct CV_EXPORTS Center |
|
{ |
|
Point2d location; |
|
double radius; |
|
double confidence; |
|
}; |
|
|
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
virtual void findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, std::vector<Center> ¢ers) const; |
|
|
|
Params params; |
|
}; |
|
|
|
class CV_EXPORTS DenseFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
class CV_EXPORTS Params |
|
{ |
|
public: |
|
Params( float initFeatureScale=1.f, int featureScaleLevels=1, float featureScaleMul=0.1f, |
|
int initXyStep=6, int initImgBound=0, bool varyXyStepWithScale=true, bool varyImgBoundWithScale=false ); |
|
float initFeatureScale; |
|
int featureScaleLevels; |
|
float featureScaleMul; |
|
|
|
int initXyStep; |
|
int initImgBound; |
|
|
|
bool varyXyStepWithScale; |
|
bool varyImgBoundWithScale; |
|
|
|
void read( const FileNode& fn ); |
|
void write( FileStorage& fs ) const; |
|
}; |
|
|
|
DenseFeatureDetector( const DenseFeatureDetector::Params& params=DenseFeatureDetector::Params() ); |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
Params params; |
|
}; |
|
|
|
/* |
|
* Adapts a detector to partition the source image into a grid and detect |
|
* points in each cell. |
|
*/ |
|
class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
/* |
|
* detector Detector that will be adapted. |
|
* maxTotalKeypoints Maximum count of keypoints detected on the image. Only the strongest keypoints |
|
* will be keeped. |
|
* gridRows Grid rows count. |
|
* gridCols Grid column count. |
|
*/ |
|
CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxTotalKeypoints=1000, |
|
int gridRows=4, int gridCols=4 ); |
|
|
|
// TODO implement read/write |
|
virtual bool empty() const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
Ptr<FeatureDetector> detector; |
|
int maxTotalKeypoints; |
|
int gridRows; |
|
int gridCols; |
|
}; |
|
|
|
/* |
|
* Adapts a detector to detect points over multiple levels of a Gaussian |
|
* pyramid. Useful for detectors that are not inherently scaled. |
|
*/ |
|
class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
// maxLevel - The 0-based index of the last pyramid layer |
|
CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 ); |
|
|
|
// TODO implement read/write |
|
virtual bool empty() const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
Ptr<FeatureDetector> detector; |
|
int maxLevel; |
|
}; |
|
|
|
/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector |
|
* and is a wrapper for FeatureDetector that allow them to be adjusted after a detection |
|
*/ |
|
class CV_EXPORTS AdjusterAdapter: public FeatureDetector |
|
{ |
|
public: |
|
/** pure virtual interface |
|
*/ |
|
virtual ~AdjusterAdapter() {} |
|
/** too few features were detected so, adjust the detector params accordingly |
|
* \param min the minimum number of desired features |
|
* \param n_detected the number previously detected |
|
*/ |
|
virtual void tooFew(int min, int n_detected) = 0; |
|
/** too many features were detected so, adjust the detector params accordingly |
|
* \param max the maximum number of desired features |
|
* \param n_detected the number previously detected |
|
*/ |
|
virtual void tooMany(int max, int n_detected) = 0; |
|
/** are params maxed out or still valid? |
|
* \return false if the parameters can't be adjusted any more |
|
*/ |
|
virtual bool good() const = 0; |
|
|
|
virtual Ptr<AdjusterAdapter> clone() const = 0; |
|
|
|
static Ptr<AdjusterAdapter> create( const string& detectorType ); |
|
}; |
|
/** \brief an adaptively adjusting detector that iteratively detects until the desired number |
|
* of features are detected. |
|
* Beware that this is not thread safe - as the adjustment of parameters breaks the const |
|
* of the detection routine... |
|
* /TODO Make this const correct and thread safe |
|
* |
|
* sample usage: |
|
//will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run |
|
//FAST feature detection 10 times until that number of keypoints are found |
|
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10)); |
|
|
|
*/ |
|
class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector |
|
{ |
|
public: |
|
|
|
/** \param adjaster an AdjusterAdapter that will do the detection and parameter adjustment |
|
* \param max_features the maximum desired number of features |
|
* \param max_iters the maximum number of times to try to adjust the feature detector params |
|
* for the FastAdjuster this can be high, but with Star or Surf this can get time consuming |
|
* \param min_features the minimum desired features |
|
*/ |
|
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster, int min_features=400, int max_features=500, int max_iters=5 ); |
|
|
|
virtual bool empty() const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
private: |
|
DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&); |
|
DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&); |
|
|
|
int escape_iters_; |
|
int min_features_, max_features_; |
|
const Ptr<AdjusterAdapter> adjuster_; |
|
}; |
|
|
|
/**\brief an adjust for the FAST detector. This will basically decrement or increment the |
|
* threshold by 1 |
|
*/ |
|
class CV_EXPORTS FastAdjuster: public AdjusterAdapter |
|
{ |
|
public: |
|
/**\param init_thresh the initial threshold to start with, default = 20 |
|
* \param nonmax whether to use non max or not for fast feature detection |
|
*/ |
|
FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200); |
|
|
|
virtual void tooFew(int min, int n_detected); |
|
virtual void tooMany(int max, int n_detected); |
|
virtual bool good() const; |
|
|
|
virtual Ptr<AdjusterAdapter> clone() const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
int thresh_; |
|
bool nonmax_; |
|
int init_thresh_, min_thresh_, max_thresh_; |
|
}; |
|
|
|
|
|
/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now |
|
* TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams |
|
*/ |
|
class CV_EXPORTS StarAdjuster: public AdjusterAdapter |
|
{ |
|
public: |
|
StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.); |
|
|
|
virtual void tooFew(int min, int n_detected); |
|
virtual void tooMany(int max, int n_detected); |
|
virtual bool good() const; |
|
|
|
virtual Ptr<AdjusterAdapter> clone() const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
double thresh_, init_thresh_, min_thresh_, max_thresh_; |
|
CvStarDetectorParams params_; //todo use these instead of thresh_ |
|
}; |
|
|
|
class CV_EXPORTS SurfAdjuster: public AdjusterAdapter |
|
{ |
|
public: |
|
SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 ); |
|
|
|
virtual void tooFew(int min, int n_detected); |
|
virtual void tooMany(int max, int n_detected); |
|
virtual bool good() const; |
|
|
|
virtual Ptr<AdjusterAdapter> clone() const; |
|
|
|
protected: |
|
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; |
|
|
|
double thresh_, init_thresh_, min_thresh_, max_thresh_; |
|
}; |
|
|
|
CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, |
|
float maxDeltaX, float maxDeltaY ); |
|
|
|
/****************************************************************************************\ |
|
* DescriptorExtractor * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* Abstract base class for computing descriptors for image keypoints. |
|
* |
|
* In this interface we assume a keypoint descriptor can be represented as a |
|
* dense, fixed-dimensional vector of some basic type. Most descriptors used |
|
* in practice follow this pattern, as it makes it very easy to compute |
|
* distances between descriptors. Therefore we represent a collection of |
|
* descriptors as a cv::Mat, where each row is one keypoint descriptor. |
|
*/ |
|
class CV_EXPORTS_W DescriptorExtractor |
|
{ |
|
public: |
|
virtual ~DescriptorExtractor(); |
|
|
|
/* |
|
* Compute the descriptors for a set of keypoints in an image. |
|
* image The image. |
|
* keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed. |
|
* descriptors Copmputed descriptors. Row i is the descriptor for keypoint i. |
|
*/ |
|
CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const; |
|
|
|
/* |
|
* Compute the descriptors for a keypoints collection detected in image collection. |
|
* images Image collection. |
|
* keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i]. |
|
* Keypoints for which a descriptor cannot be computed are removed. |
|
* descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i]. |
|
*/ |
|
void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const; |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
|
|
CV_WRAP virtual int descriptorSize() const = 0; |
|
CV_WRAP virtual int descriptorType() const = 0; |
|
|
|
CV_WRAP virtual bool empty() const; |
|
|
|
CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType ); |
|
|
|
protected: |
|
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0; |
|
|
|
/* |
|
* Remove keypoints within borderPixels of an image edge. |
|
*/ |
|
static void removeBorderKeypoints( vector<KeyPoint>& keypoints, |
|
Size imageSize, int borderSize ); |
|
}; |
|
|
|
/* |
|
* SiftDescriptorExtractor |
|
*/ |
|
class CV_EXPORTS SiftDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
SiftDescriptorExtractor( const SIFT::DescriptorParams& descriptorParams=SIFT::DescriptorParams(), |
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() ); |
|
SiftDescriptorExtractor( double magnification, bool isNormalize=true, bool recalculateAngles=true, |
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, |
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage &fs ) const; |
|
|
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
|
|
protected: |
|
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; |
|
|
|
SIFT sift; |
|
}; |
|
|
|
/* |
|
* SurfDescriptorExtractor |
|
*/ |
|
class CV_EXPORTS SurfDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
SurfDescriptorExtractor( int nOctaves=4, int nOctaveLayers=2, bool extended=false, bool upright=false ); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage &fs ) const; |
|
|
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
|
|
protected: |
|
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; |
|
|
|
SURF surf; |
|
}; |
|
|
|
/** The descriptor extractor for the ORB descriptor |
|
* There are two ways to speed up its computation: |
|
* - if you know the step size of the integral image, use setStepSize so that offsets are precomputed and cached |
|
* - if you know the integral image, use setIntegralImage so that it is not recomputed. This calls |
|
* setStepSize automatically |
|
*/ |
|
class CV_EXPORTS OrbDescriptorExtractor : public cv::DescriptorExtractor |
|
{ |
|
public: |
|
/** default constructor |
|
* @param params parameters to use |
|
*/ |
|
OrbDescriptorExtractor(ORB::CommonParams params = ORB::CommonParams()); |
|
|
|
/** destructor */ |
|
~OrbDescriptorExtractor() |
|
{ |
|
} |
|
|
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
|
|
virtual void read(const cv::FileNode&); |
|
virtual void write(cv::FileStorage&) const; |
|
|
|
protected: |
|
void computeImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors) const; |
|
private: |
|
/** the ORB object we use for the computations */ |
|
mutable ORB orb_; |
|
/** The parameters used */ |
|
ORB::CommonParams params_; |
|
}; |
|
|
|
/* |
|
* CalonderDescriptorExtractor |
|
*/ |
|
template<typename T> |
|
class CV_EXPORTS CalonderDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
CalonderDescriptorExtractor( const string& classifierFile ); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage &fs ) const; |
|
|
|
virtual int descriptorSize() const { return classifier_.classes(); } |
|
virtual int descriptorType() const { return DataType<T>::type; } |
|
|
|
virtual bool empty() const; |
|
|
|
protected: |
|
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; |
|
|
|
RTreeClassifier classifier_; |
|
static const int BORDER_SIZE = 16; |
|
}; |
|
|
|
template<typename T> |
|
CalonderDescriptorExtractor<T>::CalonderDescriptorExtractor(const std::string& classifier_file) |
|
{ |
|
classifier_.read( classifier_file.c_str() ); |
|
} |
|
|
|
template<typename T> |
|
void CalonderDescriptorExtractor<T>::computeImpl( const cv::Mat& image, |
|
std::vector<cv::KeyPoint>& keypoints, |
|
cv::Mat& descriptors) const |
|
{ |
|
// Cannot compute descriptors for keypoints on the image border. |
|
KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE); |
|
|
|
/// @todo Check 16-byte aligned |
|
descriptors.create(keypoints.size(), classifier_.classes(), cv::DataType<T>::type); |
|
|
|
int patchSize = RandomizedTree::PATCH_SIZE; |
|
int offset = patchSize / 2; |
|
for (size_t i = 0; i < keypoints.size(); ++i) |
|
{ |
|
cv::Point2f pt = keypoints[i].pt; |
|
IplImage ipl = image( Rect((int)(pt.x - offset), (int)(pt.y - offset), patchSize, patchSize) ); |
|
classifier_.getSignature( &ipl, descriptors.ptr<T>(i)); |
|
} |
|
} |
|
|
|
template<typename T> |
|
void CalonderDescriptorExtractor<T>::read( const FileNode& ) |
|
{} |
|
|
|
template<typename T> |
|
void CalonderDescriptorExtractor<T>::write( FileStorage& ) const |
|
{} |
|
|
|
template<typename T> |
|
bool CalonderDescriptorExtractor<T>::empty() const |
|
{ |
|
return classifier_.trees_.empty(); |
|
} |
|
|
|
/* |
|
* OpponentColorDescriptorExtractor |
|
* |
|
* Adapts a descriptor extractor to compute descripors in Opponent Color Space |
|
* (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition"). |
|
* Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor |
|
* (set in constructor) computes descriptors on each of the three channel and concatenate |
|
* them into a single color descriptor. |
|
*/ |
|
class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor ); |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
|
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
|
|
virtual bool empty() const; |
|
|
|
protected: |
|
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; |
|
|
|
Ptr<DescriptorExtractor> descriptorExtractor; |
|
}; |
|
|
|
/* |
|
* BRIEF Descriptor |
|
*/ |
|
class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
static const int PATCH_SIZE = 48; |
|
static const int KERNEL_SIZE = 9; |
|
|
|
// bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes. |
|
BriefDescriptorExtractor( int bytes = 32 ); |
|
|
|
virtual void read( const FileNode& ); |
|
virtual void write( FileStorage& ) const; |
|
|
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
|
|
/// @todo read and write for brief |
|
|
|
protected: |
|
virtual void computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const; |
|
|
|
typedef void(*PixelTestFn)(const Mat&, const std::vector<KeyPoint>&, Mat&); |
|
|
|
int bytes_; |
|
PixelTestFn test_fn_; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Distance * |
|
\****************************************************************************************/ |
|
template<typename T> |
|
struct CV_EXPORTS Accumulator |
|
{ |
|
typedef T Type; |
|
}; |
|
|
|
template<> struct Accumulator<unsigned char> { typedef float Type; }; |
|
template<> struct Accumulator<unsigned short> { typedef float Type; }; |
|
template<> struct Accumulator<char> { typedef float Type; }; |
|
template<> struct Accumulator<short> { typedef float Type; }; |
|
|
|
/* |
|
* Squared Euclidean distance functor |
|
*/ |
|
template<class T> |
|
struct CV_EXPORTS SL2 |
|
{ |
|
typedef T ValueType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const |
|
{ |
|
ResultType result = ResultType(); |
|
for( int i = 0; i < size; i++ ) |
|
{ |
|
ResultType diff = (ResultType)(a[i] - b[i]); |
|
result += diff*diff; |
|
} |
|
return result; |
|
} |
|
}; |
|
|
|
/* |
|
* Euclidean distance functor |
|
*/ |
|
template<class T> |
|
struct CV_EXPORTS L2 |
|
{ |
|
typedef T ValueType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const |
|
{ |
|
ResultType result = ResultType(); |
|
for( int i = 0; i < size; i++ ) |
|
{ |
|
ResultType diff = (ResultType)(a[i] - b[i]); |
|
result += diff*diff; |
|
} |
|
return (ResultType)sqrt((double)result); |
|
} |
|
}; |
|
|
|
/* |
|
* Manhattan distance (city block distance) functor |
|
*/ |
|
template<class T> |
|
struct CV_EXPORTS L1 |
|
{ |
|
typedef T ValueType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const |
|
{ |
|
ResultType result = ResultType(); |
|
for( int i = 0; i < size; i++ ) |
|
{ |
|
ResultType diff = a[i] - b[i]; |
|
result += (ResultType)fabs( diff ); |
|
} |
|
return result; |
|
} |
|
}; |
|
|
|
/* |
|
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor |
|
* bit count of A exclusive XOR'ed with B |
|
*/ |
|
struct CV_EXPORTS HammingLUT |
|
{ |
|
typedef unsigned char ValueType; |
|
typedef int ResultType; |
|
|
|
/** this will count the bits in a ^ b |
|
*/ |
|
ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const; |
|
|
|
/** \brief given a byte, count the bits using a compile time generated look up table |
|
* \param b the byte to count bits. The look up table has an entry for all |
|
* values of b, where that entry is the number of bits. |
|
* \return the number of bits in byte b |
|
*/ |
|
static unsigned char byteBitsLookUp(unsigned char b); |
|
}; |
|
|
|
|
|
/// Hamming distance functor, this one will try to use gcc's __builtin_popcountl |
|
/// but will fall back on HammingLUT if not available |
|
/// bit count of A exclusive XOR'ed with B |
|
struct CV_EXPORTS Hamming |
|
{ |
|
typedef unsigned char ValueType; |
|
|
|
//! important that this is signed as weird behavior happens |
|
// in BruteForce if not |
|
typedef int ResultType; |
|
|
|
/** this will count the bits in a ^ b, using __builtin_popcountl try compiling with sse4 |
|
*/ |
|
ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* DMatch * |
|
\****************************************************************************************/ |
|
/* |
|
* Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors. |
|
*/ |
|
struct CV_EXPORTS_W_SIMPLE DMatch |
|
{ |
|
CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(std::numeric_limits<float>::max()) {} |
|
CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) : |
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {} |
|
CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) : |
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {} |
|
|
|
CV_PROP_RW int queryIdx; // query descriptor index |
|
CV_PROP_RW int trainIdx; // train descriptor index |
|
CV_PROP_RW int imgIdx; // train image index |
|
|
|
CV_PROP_RW float distance; |
|
|
|
// less is better |
|
bool operator<( const DMatch &m ) const |
|
{ |
|
return distance < m.distance; |
|
} |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* DescriptorMatcher * |
|
\****************************************************************************************/ |
|
/* |
|
* Abstract base class for matching two sets of descriptors. |
|
*/ |
|
class CV_EXPORTS_W DescriptorMatcher |
|
{ |
|
public: |
|
virtual ~DescriptorMatcher(); |
|
|
|
/* |
|
* Add descriptors to train descriptor collection. |
|
* descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image. |
|
*/ |
|
CV_WRAP virtual void add( const vector<Mat>& descriptors ); |
|
/* |
|
* Get train descriptors collection. |
|
*/ |
|
CV_WRAP const vector<Mat>& getTrainDescriptors() const; |
|
/* |
|
* Clear train descriptors collection. |
|
*/ |
|
CV_WRAP virtual void clear(); |
|
|
|
/* |
|
* Return true if there are not train descriptors in collection. |
|
*/ |
|
CV_WRAP virtual bool empty() const; |
|
/* |
|
* Return true if the matcher supports mask in match methods. |
|
*/ |
|
CV_WRAP virtual bool isMaskSupported() const = 0; |
|
|
|
/* |
|
* Train matcher (e.g. train flann index). |
|
* In all methods to match the method train() is run every time before matching. |
|
* Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation |
|
* of this method, other matchers really train their inner structures |
|
* (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation |
|
* of train() should check the class object state and do traing/retraining |
|
* only if the state requires that (e.g. FlannBasedMatcher trains flann::Index |
|
* if it has not trained yet or if new descriptors have been added to the train |
|
* collection). |
|
*/ |
|
CV_WRAP virtual void train(); |
|
/* |
|
* Group of methods to match descriptors from image pair. |
|
* Method train() is run in this methods. |
|
*/ |
|
// Find one best match for each query descriptor (if mask is empty). |
|
CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const; |
|
// Find k best matches for each query descriptor (in increasing order of distances). |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
CV_OUT vector<vector<DMatch> >& matches, int k, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
// Find best matches for each query descriptor which have distance less than |
|
// maxDistance (in increasing order of distances). |
|
void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
/* |
|
* Group of methods to match descriptors from one image to image set. |
|
* See description of similar methods for matching image pair above. |
|
*/ |
|
CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches, |
|
const vector<Mat>& masks=vector<Mat>() ); |
|
CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
|
|
// Reads matcher object from a file node |
|
virtual void read( const FileNode& ); |
|
// Writes matcher object to a file storage |
|
virtual void write( FileStorage& ) const; |
|
|
|
// Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies |
|
// both parameters and train data. If emptyTrainData is true the method create object copy with current parameters |
|
// but with empty train data. |
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; |
|
|
|
CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType ); |
|
protected: |
|
/* |
|
* Class to work with descriptors from several images as with one merged matrix. |
|
* It is used e.g. in FlannBasedMatcher. |
|
*/ |
|
class CV_EXPORTS DescriptorCollection |
|
{ |
|
public: |
|
DescriptorCollection(); |
|
DescriptorCollection( const DescriptorCollection& collection ); |
|
virtual ~DescriptorCollection(); |
|
|
|
// Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here. |
|
void set( const vector<Mat>& descriptors ); |
|
virtual void clear(); |
|
|
|
const Mat& getDescriptors() const; |
|
const Mat getDescriptor( int imgIdx, int localDescIdx ) const; |
|
const Mat getDescriptor( int globalDescIdx ) const; |
|
void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const; |
|
|
|
int size() const; |
|
|
|
protected: |
|
Mat mergedDescriptors; |
|
vector<int> startIdxs; |
|
}; |
|
|
|
// In fact the matching is implemented only by the following two methods. These methods suppose |
|
// that the class object has been trained already. Public match methods call these methods |
|
// after calling train(). |
|
virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0; |
|
virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0; |
|
|
|
static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx ); |
|
static bool isMaskedOut( const vector<Mat>& masks, int queryIdx ); |
|
|
|
static Mat clone_op( Mat m ) { return m.clone(); } |
|
void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const; |
|
|
|
// Collection of descriptors from train images. |
|
vector<Mat> trainDescCollection; |
|
}; |
|
|
|
/* |
|
* Brute-force descriptor matcher. |
|
* |
|
* For each descriptor in the first set, this matcher finds the closest |
|
* descriptor in the second set by trying each one. |
|
* |
|
* For efficiency, BruteForceMatcher is templated on the distance metric. |
|
* For float descriptors, a common choice would be cv::L2<float>. |
|
*/ |
|
template<class Distance> |
|
class CV_EXPORTS BruteForceMatcher : public DescriptorMatcher |
|
{ |
|
public: |
|
BruteForceMatcher( Distance d = Distance() ) : distance(d) {} |
|
virtual ~BruteForceMatcher() {} |
|
|
|
virtual bool isMaskSupported() const { return true; } |
|
|
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
|
|
protected: |
|
virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
|
|
Distance distance; |
|
|
|
private: |
|
/* |
|
* Next two methods are used to implement specialization. |
|
*/ |
|
static void commonKnnMatchImpl( BruteForceMatcher<Distance>& matcher, |
|
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks, bool compactResult ); |
|
static void commonRadiusMatchImpl( BruteForceMatcher<Distance>& matcher, |
|
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks, bool compactResult ); |
|
}; |
|
|
|
template<class Distance> |
|
Ptr<DescriptorMatcher> BruteForceMatcher<Distance>::clone( bool emptyTrainData ) const |
|
{ |
|
BruteForceMatcher* matcher = new BruteForceMatcher(distance); |
|
if( !emptyTrainData ) |
|
{ |
|
matcher->trainDescCollection.resize(trainDescCollection.size()); |
|
std::transform( trainDescCollection.begin(), trainDescCollection.end(), |
|
matcher->trainDescCollection.begin(), clone_op ); |
|
} |
|
return matcher; |
|
} |
|
|
|
template<class Distance> |
|
void BruteForceMatcher<Distance>::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks, bool compactResult ) |
|
{ |
|
commonKnnMatchImpl( *this, queryDescriptors, matches, k, masks, compactResult ); |
|
} |
|
|
|
template<class Distance> |
|
void BruteForceMatcher<Distance>::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, |
|
float maxDistance, const vector<Mat>& masks, bool compactResult ) |
|
{ |
|
commonRadiusMatchImpl( *this, queryDescriptors, matches, maxDistance, masks, compactResult ); |
|
} |
|
|
|
template<class Distance> |
|
inline void BruteForceMatcher<Distance>::commonKnnMatchImpl( BruteForceMatcher<Distance>& matcher, |
|
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int knn, |
|
const vector<Mat>& masks, bool compactResult ) |
|
{ |
|
typedef typename Distance::ValueType ValueType; |
|
typedef typename Distance::ResultType DistanceType; |
|
CV_DbgAssert( !queryDescriptors.empty() ); |
|
CV_Assert( DataType<ValueType>::type == queryDescriptors.type() ); |
|
|
|
int dimension = queryDescriptors.cols; |
|
matches.reserve(queryDescriptors.rows); |
|
|
|
size_t imgCount = matcher.trainDescCollection.size(); |
|
vector<Mat> allDists( imgCount ); // distances between one query descriptor and all train descriptors |
|
for( size_t i = 0; i < imgCount; i++ ) |
|
allDists[i] = Mat( 1, matcher.trainDescCollection[i].rows, DataType<DistanceType>::type ); |
|
|
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
{ |
|
if( matcher.isMaskedOut( masks, qIdx ) ) |
|
{ |
|
if( !compactResult ) // push empty vector |
|
matches.push_back( vector<DMatch>() ); |
|
} |
|
else |
|
{ |
|
// 1. compute distances between i-th query descriptor and all train descriptors |
|
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ ) |
|
{ |
|
CV_Assert( DataType<ValueType>::type == matcher.trainDescCollection[iIdx].type() || matcher.trainDescCollection[iIdx].empty() ); |
|
CV_Assert( queryDescriptors.cols == matcher.trainDescCollection[iIdx].cols || |
|
matcher.trainDescCollection[iIdx].empty() ); |
|
|
|
const ValueType* d1 = (const ValueType*)(queryDescriptors.data + queryDescriptors.step*qIdx); |
|
allDists[iIdx].setTo( Scalar::all(std::numeric_limits<DistanceType>::max()) ); |
|
for( int tIdx = 0; tIdx < matcher.trainDescCollection[iIdx].rows; tIdx++ ) |
|
{ |
|
if( masks.empty() || matcher.isPossibleMatch(masks[iIdx], qIdx, tIdx) ) |
|
{ |
|
const ValueType* d2 = (const ValueType*)(matcher.trainDescCollection[iIdx].data + |
|
matcher.trainDescCollection[iIdx].step*tIdx); |
|
allDists[iIdx].at<DistanceType>(0, tIdx) = matcher.distance(d1, d2, dimension); |
|
} |
|
} |
|
} |
|
|
|
// 2. choose k nearest matches for query[i] |
|
matches.push_back( vector<DMatch>() ); |
|
vector<vector<DMatch> >::reverse_iterator curMatches = matches.rbegin(); |
|
for( int k = 0; k < knn; k++ ) |
|
{ |
|
DMatch bestMatch; |
|
bestMatch.distance = std::numeric_limits<float>::max(); |
|
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ ) |
|
{ |
|
if( !allDists[iIdx].empty() ) |
|
{ |
|
double minVal; |
|
Point minLoc; |
|
minMaxLoc( allDists[iIdx], &minVal, 0, &minLoc, 0 ); |
|
if( minVal < bestMatch.distance ) |
|
bestMatch = DMatch( qIdx, minLoc.x, (int)iIdx, (float)minVal ); |
|
} |
|
} |
|
if( bestMatch.trainIdx == -1 ) |
|
break; |
|
|
|
allDists[bestMatch.imgIdx].at<DistanceType>(0, bestMatch.trainIdx) = std::numeric_limits<DistanceType>::max(); |
|
curMatches->push_back( bestMatch ); |
|
} |
|
//TODO should already be sorted at this point? |
|
std::sort( curMatches->begin(), curMatches->end() ); |
|
} |
|
} |
|
} |
|
|
|
template<class Distance> |
|
inline void BruteForceMatcher<Distance>::commonRadiusMatchImpl( BruteForceMatcher<Distance>& matcher, |
|
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks, bool compactResult ) |
|
{ |
|
typedef typename Distance::ValueType ValueType; |
|
typedef typename Distance::ResultType DistanceType; |
|
CV_DbgAssert( !queryDescriptors.empty() ); |
|
CV_Assert( DataType<ValueType>::type == queryDescriptors.type() ); |
|
|
|
int dimension = queryDescriptors.cols; |
|
matches.reserve(queryDescriptors.rows); |
|
|
|
size_t imgCount = matcher.trainDescCollection.size(); |
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
{ |
|
if( matcher.isMaskedOut( masks, qIdx ) ) |
|
{ |
|
if( !compactResult ) // push empty vector |
|
matches.push_back( vector<DMatch>() ); |
|
} |
|
else |
|
{ |
|
matches.push_back( vector<DMatch>() ); |
|
vector<vector<DMatch> >::reverse_iterator curMatches = matches.rbegin(); |
|
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ ) |
|
{ |
|
CV_Assert( DataType<ValueType>::type == matcher.trainDescCollection[iIdx].type() || |
|
matcher.trainDescCollection[iIdx].empty() ); |
|
CV_Assert( queryDescriptors.cols == matcher.trainDescCollection[iIdx].cols || |
|
matcher.trainDescCollection[iIdx].empty() ); |
|
|
|
const ValueType* d1 = (const ValueType*)(queryDescriptors.data + queryDescriptors.step*qIdx); |
|
for( int tIdx = 0; tIdx < matcher.trainDescCollection[iIdx].rows; tIdx++ ) |
|
{ |
|
if( masks.empty() || matcher.isPossibleMatch(masks[iIdx], qIdx, tIdx) ) |
|
{ |
|
const ValueType* d2 = (const ValueType*)(matcher.trainDescCollection[iIdx].data + |
|
matcher.trainDescCollection[iIdx].step*tIdx); |
|
DistanceType d = matcher.distance(d1, d2, dimension); |
|
if( d < maxDistance ) |
|
curMatches->push_back( DMatch( qIdx, tIdx, (int)iIdx, (float)d ) ); |
|
} |
|
} |
|
} |
|
std::sort( curMatches->begin(), curMatches->end() ); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* BruteForceMatcher L2 specialization |
|
*/ |
|
template<> |
|
void BruteForceMatcher<L2<float> >::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks, bool compactResult ); |
|
template<> |
|
void BruteForceMatcher<L2<float> >::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, |
|
float maxDistance, const vector<Mat>& masks, bool compactResult ); |
|
|
|
/* |
|
* Flann based matcher |
|
*/ |
|
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher |
|
{ |
|
public: |
|
CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(), |
|
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() ); |
|
|
|
virtual void add( const vector<Mat>& descriptors ); |
|
virtual void clear(); |
|
|
|
// Reads matcher object from a file node |
|
virtual void read( const FileNode& ); |
|
// Writes matcher object to a file storage |
|
virtual void write( FileStorage& ) const; |
|
|
|
virtual void train(); |
|
virtual bool isMaskSupported() const; |
|
|
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
|
|
protected: |
|
static void convertToDMatches( const DescriptorCollection& descriptors, |
|
const Mat& indices, const Mat& distances, |
|
vector<vector<DMatch> >& matches ); |
|
|
|
virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
|
|
Ptr<flann::IndexParams> indexParams; |
|
Ptr<flann::SearchParams> searchParams; |
|
Ptr<flann::Index> flannIndex; |
|
|
|
DescriptorCollection mergedDescriptors; |
|
int addedDescCount; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* GenericDescriptorMatcher * |
|
\****************************************************************************************/ |
|
/* |
|
* Abstract interface for a keypoint descriptor and matcher |
|
*/ |
|
class GenericDescriptorMatcher; |
|
typedef GenericDescriptorMatcher GenericDescriptorMatch; |
|
|
|
class CV_EXPORTS GenericDescriptorMatcher |
|
{ |
|
public: |
|
GenericDescriptorMatcher(); |
|
virtual ~GenericDescriptorMatcher(); |
|
|
|
/* |
|
* Add train collection: images and keypoints from them. |
|
* images A set of train images. |
|
* ketpoints Keypoint collection that have been detected on train images. |
|
* |
|
* Keypoints for which a descriptor cannot be computed are removed. Such keypoints |
|
* must be filtered in this method befor adding keypoints to train collection "trainPointCollection". |
|
* If inheritor class need perform such prefiltering the method add() must be overloaded. |
|
* In the other class methods programmer has access to the train keypoints by a constant link. |
|
*/ |
|
virtual void add( const vector<Mat>& images, |
|
vector<vector<KeyPoint> >& keypoints ); |
|
|
|
const vector<Mat>& getTrainImages() const; |
|
const vector<vector<KeyPoint> >& getTrainKeypoints() const; |
|
|
|
/* |
|
* Clear images and keypoints storing in train collection. |
|
*/ |
|
virtual void clear(); |
|
/* |
|
* Returns true if matcher supports mask to match descriptors. |
|
*/ |
|
virtual bool isMaskSupported() = 0; |
|
/* |
|
* Train some inner structures (e.g. flann index or decision trees). |
|
* train() methods is run every time in matching methods. So the method implementation |
|
* should has a check whether these inner structures need be trained/retrained or not. |
|
*/ |
|
virtual void train(); |
|
|
|
/* |
|
* Classifies query keypoints. |
|
* queryImage The query image |
|
* queryKeypoints Keypoints from the query image |
|
* trainImage The train image |
|
* trainKeypoints Keypoints from the train image |
|
*/ |
|
// Classify keypoints from query image under one train image. |
|
void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const; |
|
// Classify keypoints from query image under train image collection. |
|
void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints ); |
|
|
|
/* |
|
* Group of methods to match keypoints from image pair. |
|
* Keypoints for which a descriptor cannot be computed are removed. |
|
* train() method is called here. |
|
*/ |
|
// Find one best match for each query descriptor (if mask is empty). |
|
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, |
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const; |
|
// Find k best matches for each query keypoint (in increasing order of distances). |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. |
|
// If compactResult is true matches vector will not contain matches for fully masked out query descriptors. |
|
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
// Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances). |
|
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
/* |
|
* Group of methods to match keypoints from one image to image set. |
|
* See description of similar methods for matching image pair above. |
|
*/ |
|
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() ); |
|
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
|
|
// Reads matcher object from a file node |
|
virtual void read( const FileNode& ); |
|
// Writes matcher object to a file storage |
|
virtual void write( FileStorage& ) const; |
|
|
|
// Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty) |
|
virtual bool empty() const; |
|
|
|
// Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies |
|
// both parameters and train data. If emptyTrainData is true the method create object copy with current parameters |
|
// but with empty train data. |
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; |
|
|
|
static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType, |
|
const string ¶msFilename=string() ); |
|
|
|
protected: |
|
// In fact the matching is implemented only by the following two methods. These methods suppose |
|
// that the class object has been trained already. Public match methods call these methods |
|
// after calling train(). |
|
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks, bool compactResult ) = 0; |
|
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks, bool compactResult ) = 0; |
|
/* |
|
* A storage for sets of keypoints together with corresponding images and class IDs |
|
*/ |
|
class CV_EXPORTS KeyPointCollection |
|
{ |
|
public: |
|
KeyPointCollection(); |
|
KeyPointCollection( const KeyPointCollection& collection ); |
|
void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints ); |
|
void clear(); |
|
|
|
// Returns the total number of keypoints in the collection |
|
size_t keypointCount() const; |
|
size_t imageCount() const; |
|
|
|
const vector<vector<KeyPoint> >& getKeypoints() const; |
|
const vector<KeyPoint>& getKeypoints( int imgIdx ) const; |
|
const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const; |
|
const KeyPoint& getKeyPoint( int globalPointIdx ) const; |
|
void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const; |
|
|
|
const vector<Mat>& getImages() const; |
|
const Mat& getImage( int imgIdx ) const; |
|
|
|
protected: |
|
int pointCount; |
|
|
|
vector<Mat> images; |
|
vector<vector<KeyPoint> > keypoints; |
|
// global indices of the first points in each image, startIndices.size() = keypoints.size() |
|
vector<int> startIndices; |
|
|
|
private: |
|
static Mat clone_op( Mat m ) { return m.clone(); } |
|
}; |
|
|
|
KeyPointCollection trainPointCollection; |
|
}; |
|
|
|
/* |
|
* OneWayDescriptorMatcher |
|
*/ |
|
class OneWayDescriptorMatcher; |
|
typedef OneWayDescriptorMatcher OneWayDescriptorMatch; |
|
|
|
class CV_EXPORTS OneWayDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
class CV_EXPORTS Params |
|
{ |
|
public: |
|
static const int POSE_COUNT = 500; |
|
static const int PATCH_WIDTH = 24; |
|
static const int PATCH_HEIGHT = 24; |
|
static float GET_MIN_SCALE() { return 0.7f; } |
|
static float GET_MAX_SCALE() { return 1.5f; } |
|
static float GET_STEP_SCALE() { return 1.2f; } |
|
|
|
Params( int poseCount = POSE_COUNT, |
|
Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), |
|
string pcaFilename = string(), |
|
string trainPath = string(), string trainImagesList = string(), |
|
float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(), |
|
float stepScale = GET_STEP_SCALE() ); |
|
|
|
int poseCount; |
|
Size patchSize; |
|
string pcaFilename; |
|
string trainPath; |
|
string trainImagesList; |
|
|
|
float minScale, maxScale, stepScale; |
|
}; |
|
|
|
OneWayDescriptorMatcher( const Params& params=Params() ); |
|
virtual ~OneWayDescriptorMatcher(); |
|
|
|
void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() ); |
|
|
|
// Clears keypoints storing in collection and OneWayDescriptorBase |
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
|
|
virtual bool isMaskSupported(); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
virtual bool empty() const; |
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
|
|
protected: |
|
// Matches a set of keypoints from a single image of the training set. A rectangle with a center in a keypoint |
|
// and size (patch_width/2*scale, patch_height/2*scale) is cropped from the source image for each |
|
// keypoint. scale is iterated from DescriptorOneWayParams::min_scale to DescriptorOneWayParams::max_scale. |
|
// The minimum distance to each training patch with all its affine poses is found over all scales. |
|
// The class ID of a match is returned for each keypoint. The distance is calculated over PCA components |
|
// loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances. |
|
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks, bool compactResult ); |
|
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks, bool compactResult ); |
|
|
|
Ptr<OneWayDescriptorBase> base; |
|
Params params; |
|
int prevTrainCount; |
|
}; |
|
|
|
/* |
|
* FernDescriptorMatcher |
|
*/ |
|
class FernDescriptorMatcher; |
|
typedef FernDescriptorMatcher FernDescriptorMatch; |
|
|
|
class CV_EXPORTS FernDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
class CV_EXPORTS Params |
|
{ |
|
public: |
|
Params( int nclasses=0, |
|
int patchSize=FernClassifier::PATCH_SIZE, |
|
int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE, |
|
int nstructs=FernClassifier::DEFAULT_STRUCTS, |
|
int structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
|
int nviews=FernClassifier::DEFAULT_VIEWS, |
|
int compressionMethod=FernClassifier::COMPRESSION_NONE, |
|
const PatchGenerator& patchGenerator=PatchGenerator() ); |
|
|
|
Params( const string& filename ); |
|
|
|
int nclasses; |
|
int patchSize; |
|
int signatureSize; |
|
int nstructs; |
|
int structSize; |
|
int nviews; |
|
int compressionMethod; |
|
PatchGenerator patchGenerator; |
|
|
|
string filename; |
|
}; |
|
|
|
FernDescriptorMatcher( const Params& params=Params() ); |
|
virtual ~FernDescriptorMatcher(); |
|
|
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
|
|
virtual bool isMaskSupported(); |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
virtual bool empty() const; |
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
|
|
protected: |
|
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks, bool compactResult ); |
|
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks, bool compactResult ); |
|
|
|
void trainFernClassifier(); |
|
void calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt, |
|
float& bestProb, int& bestMatchIdx, vector<float>& signature ); |
|
Ptr<FernClassifier> classifier; |
|
Params params; |
|
int prevTrainCount; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* VectorDescriptorMatcher * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* A class used for matching descriptors that can be described as vectors in a finite-dimensional space |
|
*/ |
|
class VectorDescriptorMatcher; |
|
typedef VectorDescriptorMatcher VectorDescriptorMatch; |
|
|
|
class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher ); |
|
virtual ~VectorDescriptorMatcher(); |
|
|
|
virtual void add( const vector<Mat>& imgCollection, |
|
vector<vector<KeyPoint> >& pointCollection ); |
|
|
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
|
|
virtual bool isMaskSupported(); |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
virtual bool empty() const; |
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; |
|
|
|
protected: |
|
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, int k, |
|
const vector<Mat>& masks, bool compactResult ); |
|
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks, bool compactResult ); |
|
|
|
Ptr<DescriptorExtractor> extractor; |
|
Ptr<DescriptorMatcher> matcher; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Drawing functions * |
|
\****************************************************************************************/ |
|
struct CV_EXPORTS DrawMatchesFlags |
|
{ |
|
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create), |
|
// i.e. existing memory of output image may be reused. |
|
// Two source image, matches and single keypoints will be drawn. |
|
// For each keypoint only the center point will be drawn (without |
|
// the circle around keypoint with keypoint size and orientation). |
|
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create). |
|
// Matches will be drawn on existing content of output image. |
|
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn. |
|
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and |
|
// orientation will be drawn. |
|
}; |
|
}; |
|
|
|
// Draw keypoints. |
|
CV_EXPORTS void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImage, |
|
const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ); |
|
|
|
// Draws matches of keypints from two images on output image. |
|
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, |
|
const Mat& img2, const vector<KeyPoint>& keypoints2, |
|
const vector<DMatch>& matches1to2, Mat& outImg, |
|
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), |
|
const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT ); |
|
|
|
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, |
|
const Mat& img2, const vector<KeyPoint>& keypoints2, |
|
const vector<vector<DMatch> >& matches1to2, Mat& outImg, |
|
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), |
|
const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT ); |
|
|
|
/****************************************************************************************\ |
|
* Functions to evaluate the feature detectors and [generic] descriptor extractors * |
|
\****************************************************************************************/ |
|
|
|
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2, |
|
vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2, |
|
float& repeatability, int& correspCount, |
|
const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() ); |
|
|
|
CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2, |
|
const vector<vector<uchar> >& correctMatches1to2Mask, |
|
vector<Point2f>& recallPrecisionCurve ); |
|
|
|
CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision ); |
|
CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision ); |
|
|
|
CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2, |
|
vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2, |
|
vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask, |
|
vector<Point2f>& recallPrecisionCurve, |
|
const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() ); |
|
|
|
|
|
/****************************************************************************************\ |
|
* Bag of visual words * |
|
\****************************************************************************************/ |
|
/* |
|
* Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors |
|
*/ |
|
class CV_EXPORTS BOWTrainer |
|
{ |
|
public: |
|
BOWTrainer(); |
|
virtual ~BOWTrainer(); |
|
|
|
void add( const Mat& descriptors ); |
|
const vector<Mat>& getDescriptors() const; |
|
int descripotorsCount() const; |
|
|
|
virtual void clear(); |
|
|
|
/* |
|
* Train visual words vocabulary, that is cluster training descriptors and |
|
* compute cluster centers. |
|
* Returns cluster centers. |
|
* |
|
* descriptors Training descriptors computed on images keypoints. |
|
*/ |
|
virtual Mat cluster() const = 0; |
|
virtual Mat cluster( const Mat& descriptors ) const = 0; |
|
|
|
protected: |
|
vector<Mat> descriptors; |
|
int size; |
|
}; |
|
|
|
/* |
|
* This is BOWTrainer using cv::kmeans to get vocabulary. |
|
*/ |
|
class CV_EXPORTS BOWKMeansTrainer : public BOWTrainer |
|
{ |
|
public: |
|
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), |
|
int attempts=3, int flags=KMEANS_PP_CENTERS ); |
|
virtual ~BOWKMeansTrainer(); |
|
|
|
// Returns trained vocabulary (i.e. cluster centers). |
|
virtual Mat cluster() const; |
|
virtual Mat cluster( const Mat& descriptors ) const; |
|
|
|
protected: |
|
|
|
int clusterCount; |
|
TermCriteria termcrit; |
|
int attempts; |
|
int flags; |
|
}; |
|
|
|
/* |
|
* Class to compute image descriptor using bag of visual words. |
|
*/ |
|
class CV_EXPORTS BOWImgDescriptorExtractor |
|
{ |
|
public: |
|
BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, |
|
const Ptr<DescriptorMatcher>& dmatcher ); |
|
virtual ~BOWImgDescriptorExtractor(); |
|
|
|
void setVocabulary( const Mat& vocabulary ); |
|
const Mat& getVocabulary() const; |
|
void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor, |
|
vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 ); |
|
// compute() is not constant because DescriptorMatcher::match is not constant |
|
|
|
int descriptorSize() const; |
|
int descriptorType() const; |
|
|
|
protected: |
|
Mat vocabulary; |
|
Ptr<DescriptorExtractor> dextractor; |
|
Ptr<DescriptorMatcher> dmatcher; |
|
}; |
|
|
|
} /* namespace cv */ |
|
|
|
#endif /* __cplusplus */ |
|
|
|
#endif |
|
|
|
/* End of file. */
|
|
|