mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
4.8 KiB
149 lines
4.8 KiB
package org.opencv.test.dnn; |
|
|
|
import java.io.File; |
|
import java.io.FileInputStream; |
|
import java.io.IOException; |
|
import java.util.ArrayList; |
|
import java.util.List; |
|
import org.opencv.core.Core; |
|
import org.opencv.core.Mat; |
|
import org.opencv.core.MatOfFloat; |
|
import org.opencv.core.MatOfByte; |
|
import org.opencv.core.Scalar; |
|
import org.opencv.core.Size; |
|
import org.opencv.dnn.DictValue; |
|
import org.opencv.dnn.Dnn; |
|
import org.opencv.dnn.Layer; |
|
import org.opencv.dnn.Net; |
|
import org.opencv.imgcodecs.Imgcodecs; |
|
import org.opencv.imgproc.Imgproc; |
|
import org.opencv.test.OpenCVTestCase; |
|
|
|
public class DnnTensorFlowTest extends OpenCVTestCase { |
|
|
|
private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH"; |
|
|
|
private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH"; |
|
|
|
String modelFileName = ""; |
|
String sourceImageFile = ""; |
|
|
|
Net net; |
|
|
|
private static void normAssert(Mat ref, Mat test) { |
|
final double l1 = 1e-5; |
|
final double lInf = 1e-4; |
|
double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total(); |
|
double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total(); |
|
assertTrue(normL1 < l1); |
|
assertTrue(normLInf < lInf); |
|
} |
|
|
|
@Override |
|
protected void setUp() throws Exception { |
|
super.setUp(); |
|
|
|
String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH); |
|
|
|
if(envDnnTestDataPath == null){ |
|
isTestCaseEnabled = false; |
|
return; |
|
} |
|
|
|
File dnnTestDataPath = new File(envDnnTestDataPath); |
|
modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString(); |
|
|
|
String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH); |
|
|
|
if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!"); |
|
|
|
File testDataPath = new File(envTestDataPath); |
|
|
|
File f = new File(testDataPath, "dnn/grace_hopper_227.png"); |
|
sourceImageFile = f.toString(); |
|
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile); |
|
|
|
net = Dnn.readNetFromTensorflow(modelFileName); |
|
} |
|
|
|
public void testGetLayerTypes() { |
|
List<String> layertypes = new ArrayList(); |
|
net.getLayerTypes(layertypes); |
|
|
|
assertFalse("No layer types returned!", layertypes.isEmpty()); |
|
} |
|
|
|
public void testGetLayer() { |
|
List<String> layernames = net.getLayerNames(); |
|
|
|
assertFalse("Test net returned no layers!", layernames.isEmpty()); |
|
|
|
String testLayerName = layernames.get(0); |
|
|
|
DictValue layerId = new DictValue(testLayerName); |
|
|
|
assertEquals("DictValue did not return the string, which was used in constructor!", testLayerName, layerId.getStringValue()); |
|
|
|
Layer layer = net.getLayer(layerId); |
|
|
|
assertEquals("Layer name does not match the expected value!", testLayerName, layer.get_name()); |
|
|
|
} |
|
|
|
public void checkInceptionNet(Net net) |
|
{ |
|
Mat image = Imgcodecs.imread(sourceImageFile); |
|
assertNotNull("Loading image from file failed!", image); |
|
|
|
Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true); |
|
assertNotNull("Converting image to blob failed!", inputBlob); |
|
|
|
net.setInput(inputBlob, "input"); |
|
|
|
Mat result = new Mat(); |
|
try { |
|
net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV); |
|
result = net.forward("softmax2"); |
|
} |
|
catch (Exception e) { |
|
fail("DNN forward failed: " + e.getMessage()); |
|
} |
|
assertNotNull("Net returned no result!", result); |
|
|
|
result = result.reshape(1, 1); |
|
Core.MinMaxLocResult minmax = Core.minMaxLoc(result); |
|
assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866); |
|
|
|
Mat top5RefScores = new MatOfFloat(new float[] { |
|
0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f |
|
}).reshape(1, 1); |
|
|
|
Core.sort(result, result, Core.SORT_DESCENDING); |
|
|
|
normAssert(result.colRange(0, 5), top5RefScores); |
|
} |
|
|
|
public void testTestNetForward() { |
|
checkInceptionNet(net); |
|
} |
|
|
|
public void testReadFromBuffer() { |
|
File modelFile = new File(modelFileName); |
|
byte[] modelBuffer = new byte[ (int)modelFile.length() ]; |
|
|
|
try { |
|
FileInputStream fis = new FileInputStream(modelFile); |
|
fis.read(modelBuffer); |
|
fis.close(); |
|
} catch (IOException e) { |
|
fail("Failed to read a model: " + e.getMessage()); |
|
} |
|
net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer)); |
|
checkInceptionNet(net); |
|
} |
|
|
|
public void testGetAvailableTargets() { |
|
List<Integer> targets = Dnn.getAvailableTargets(Dnn.DNN_BACKEND_OPENCV); |
|
assertTrue(targets.contains(Dnn.DNN_TARGET_CPU)); |
|
} |
|
}
|
|
|