mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
119 lines
3.6 KiB
119 lines
3.6 KiB
package org.opencv.test.dnn; |
|
|
|
import java.io.File; |
|
import java.io.FileInputStream; |
|
import java.io.IOException; |
|
import java.util.ArrayList; |
|
import java.util.List; |
|
import org.opencv.core.Core; |
|
import org.opencv.core.Mat; |
|
import org.opencv.core.MatOfInt; |
|
import org.opencv.core.MatOfFloat; |
|
import org.opencv.core.MatOfByte; |
|
import org.opencv.core.Scalar; |
|
import org.opencv.core.Size; |
|
import org.opencv.dnn.DictValue; |
|
import org.opencv.dnn.Dnn; |
|
import org.opencv.dnn.Layer; |
|
import org.opencv.dnn.Net; |
|
import org.opencv.imgcodecs.Imgcodecs; |
|
import org.opencv.imgproc.Imgproc; |
|
import org.opencv.test.OpenCVTestCase; |
|
|
|
/* |
|
* regression test for #12324, |
|
* testing various java.util.List invocations, |
|
* which use the LIST_GET macro |
|
*/ |
|
|
|
public class DnnListRegressionTest extends OpenCVTestCase { |
|
|
|
private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH"; |
|
|
|
private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH"; |
|
|
|
String modelFileName = ""; |
|
String sourceImageFile = ""; |
|
|
|
Net net; |
|
|
|
@Override |
|
protected void setUp() throws Exception { |
|
super.setUp(); |
|
|
|
String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH); |
|
|
|
if(envDnnTestDataPath == null){ |
|
isTestCaseEnabled = false; |
|
return; |
|
} |
|
|
|
File dnnTestDataPath = new File(envDnnTestDataPath); |
|
modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString(); |
|
|
|
String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH); |
|
|
|
if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!"); |
|
|
|
File testDataPath = new File(envTestDataPath); |
|
|
|
File f = new File(testDataPath, "dnn/grace_hopper_227.png"); |
|
sourceImageFile = f.toString(); |
|
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile); |
|
|
|
net = Dnn.readNetFromTensorflow(modelFileName); |
|
|
|
Mat image = Imgcodecs.imread(sourceImageFile); |
|
assertNotNull("Loading image from file failed!", image); |
|
|
|
Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true); |
|
assertNotNull("Converting image to blob failed!", inputBlob); |
|
|
|
net.setInput(inputBlob, "input"); |
|
} |
|
|
|
public void testSetInputsNames() { |
|
List<String> inputs = new ArrayList(); |
|
inputs.add("input"); |
|
try { |
|
net.setInputsNames(inputs); |
|
} catch(Exception e) { |
|
fail("Net setInputsNames failed: " + e.getMessage()); |
|
} |
|
} |
|
|
|
public void testForward() { |
|
List<Mat> outs = new ArrayList(); |
|
List<String> outNames = new ArrayList(); |
|
outNames.add("softmax2"); |
|
try { |
|
net.forward(outs,outNames); |
|
} catch(Exception e) { |
|
fail("Net forward failed: " + e.getMessage()); |
|
} |
|
} |
|
|
|
public void testGetMemoryConsumption() { |
|
int layerId = 1; |
|
List<MatOfInt> netInputShapes = new ArrayList(); |
|
netInputShapes.add(new MatOfInt(1, 3, 224, 224)); |
|
long[] weights=null; |
|
long[] blobs=null; |
|
try { |
|
net.getMemoryConsumption(layerId, netInputShapes, weights, blobs); |
|
} catch(Exception e) { |
|
fail("Net getMemoryConsumption failed: " + e.getMessage()); |
|
} |
|
} |
|
|
|
public void testGetFLOPS() { |
|
int layerId = 1; |
|
List<MatOfInt> netInputShapes = new ArrayList(); |
|
netInputShapes.add(new MatOfInt(1, 3, 224, 224)); |
|
try { |
|
net.getFLOPS(layerId, netInputShapes); |
|
} catch(Exception e) { |
|
fail("Net getFLOPS failed: " + e.getMessage()); |
|
} |
|
} |
|
}
|
|
|