mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
6.9 KiB
225 lines
6.9 KiB
#include <iostream> |
|
#include <stdio.h> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
#include "opencv2/core/ocl.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/features2d.hpp" |
|
#include "opencv2/calib3d.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/nonfree.hpp" |
|
|
|
using namespace cv; |
|
|
|
const int LOOP_NUM = 10; |
|
const int GOOD_PTS_MAX = 50; |
|
const float GOOD_PORTION = 0.15f; |
|
|
|
int64 work_begin = 0; |
|
int64 work_end = 0; |
|
|
|
static void workBegin() |
|
{ |
|
work_begin = getTickCount(); |
|
} |
|
|
|
static void workEnd() |
|
{ |
|
work_end = getTickCount() - work_begin; |
|
} |
|
|
|
static double getTime() |
|
{ |
|
return work_end /((double)getTickFrequency() )* 1000.; |
|
} |
|
|
|
template<class KPDetector> |
|
struct SURFDetector |
|
{ |
|
KPDetector surf; |
|
SURFDetector(double hessian = 800.0) |
|
:surf(hessian) |
|
{ |
|
} |
|
template<class T> |
|
void operator()(const T& in, const T& mask, std::vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false) |
|
{ |
|
surf(in, mask, pts, descriptors, useProvided); |
|
} |
|
}; |
|
|
|
template<class KPMatcher> |
|
struct SURFMatcher |
|
{ |
|
KPMatcher matcher; |
|
template<class T> |
|
void match(const T& in1, const T& in2, std::vector<cv::DMatch>& matches) |
|
{ |
|
matcher.match(in1, in2, matches); |
|
} |
|
}; |
|
|
|
static Mat drawGoodMatches( |
|
const Mat& img1, |
|
const Mat& img2, |
|
const std::vector<KeyPoint>& keypoints1, |
|
const std::vector<KeyPoint>& keypoints2, |
|
std::vector<DMatch>& matches, |
|
std::vector<Point2f>& scene_corners_ |
|
) |
|
{ |
|
//-- Sort matches and preserve top 10% matches |
|
std::sort(matches.begin(), matches.end()); |
|
std::vector< DMatch > good_matches; |
|
double minDist = matches.front().distance; |
|
double maxDist = matches.back().distance; |
|
|
|
const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION)); |
|
for( int i = 0; i < ptsPairs; i++ ) |
|
{ |
|
good_matches.push_back( matches[i] ); |
|
} |
|
std::cout << "\nMax distance: " << maxDist << std::endl; |
|
std::cout << "Min distance: " << minDist << std::endl; |
|
|
|
std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl; |
|
|
|
// drawing the results |
|
Mat img_matches; |
|
|
|
drawMatches( img1, keypoints1, img2, keypoints2, |
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), |
|
std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
|
|
|
//-- Localize the object |
|
std::vector<Point2f> obj; |
|
std::vector<Point2f> scene; |
|
|
|
for( size_t i = 0; i < good_matches.size(); i++ ) |
|
{ |
|
//-- Get the keypoints from the good matches |
|
obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt ); |
|
scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt ); |
|
} |
|
//-- Get the corners from the image_1 ( the object to be "detected" ) |
|
std::vector<Point2f> obj_corners(4); |
|
obj_corners[0] = Point(0,0); |
|
obj_corners[1] = Point( img1.cols, 0 ); |
|
obj_corners[2] = Point( img1.cols, img1.rows ); |
|
obj_corners[3] = Point( 0, img1.rows ); |
|
std::vector<Point2f> scene_corners(4); |
|
|
|
Mat H = findHomography( obj, scene, RANSAC ); |
|
perspectiveTransform( obj_corners, scene_corners, H); |
|
|
|
scene_corners_ = scene_corners; |
|
|
|
//-- Draw lines between the corners (the mapped object in the scene - image_2 ) |
|
line( img_matches, |
|
scene_corners[0] + Point2f( (float)img1.cols, 0), scene_corners[1] + Point2f( (float)img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
line( img_matches, |
|
scene_corners[1] + Point2f( (float)img1.cols, 0), scene_corners[2] + Point2f( (float)img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
line( img_matches, |
|
scene_corners[2] + Point2f( (float)img1.cols, 0), scene_corners[3] + Point2f( (float)img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
line( img_matches, |
|
scene_corners[3] + Point2f( (float)img1.cols, 0), scene_corners[0] + Point2f( (float)img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
return img_matches; |
|
} |
|
|
|
//////////////////////////////////////////////////// |
|
// This program demonstrates the usage of SURF_OCL. |
|
// use cpu findHomography interface to calculate the transformation matrix |
|
int main(int argc, char* argv[]) |
|
{ |
|
const char* keys = |
|
"{ h help | false | print help message }" |
|
"{ l left | box.png | specify left image }" |
|
"{ r right | box_in_scene.png | specify right image }" |
|
"{ o output | SURF_output.jpg | specify output save path }" |
|
"{ m cpu_mode | false | run without OpenCL }"; |
|
|
|
CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.has("help")) |
|
{ |
|
std::cout << "Usage: surf_matcher [options]" << std::endl; |
|
std::cout << "Available options:" << std::endl; |
|
cmd.printMessage(); |
|
return EXIT_SUCCESS; |
|
} |
|
if (cmd.has("cpu_mode")) |
|
{ |
|
ocl::setUseOpenCL(false); |
|
std::cout << "OpenCL was disabled" << std::endl; |
|
} |
|
|
|
UMat img1, img2; |
|
|
|
std::string outpath = cmd.get<std::string>("o"); |
|
|
|
std::string leftName = cmd.get<std::string>("l"); |
|
imread(leftName, IMREAD_GRAYSCALE).copyTo(img1); |
|
if(img1.empty()) |
|
{ |
|
std::cout << "Couldn't load " << leftName << std::endl; |
|
cmd.printMessage(); |
|
return EXIT_FAILURE; |
|
} |
|
|
|
std::string rightName = cmd.get<std::string>("r"); |
|
imread(rightName, IMREAD_GRAYSCALE).copyTo(img2); |
|
if(img2.empty()) |
|
{ |
|
std::cout << "Couldn't load " << rightName << std::endl; |
|
cmd.printMessage(); |
|
return EXIT_FAILURE; |
|
} |
|
|
|
double surf_time = 0.; |
|
|
|
//declare input/output |
|
std::vector<KeyPoint> keypoints1, keypoints2; |
|
std::vector<DMatch> matches; |
|
|
|
UMat _descriptors1, _descriptors2; |
|
Mat descriptors1 = _descriptors1.getMat(ACCESS_RW), |
|
descriptors2 = _descriptors2.getMat(ACCESS_RW); |
|
|
|
//instantiate detectors/matchers |
|
SURFDetector<SURF> surf; |
|
|
|
SURFMatcher<BFMatcher> matcher; |
|
|
|
//-- start of timing section |
|
|
|
for (int i = 0; i <= LOOP_NUM; i++) |
|
{ |
|
if(i == 1) workBegin(); |
|
surf(img1.getMat(ACCESS_READ), Mat(), keypoints1, descriptors1); |
|
surf(img2.getMat(ACCESS_READ), Mat(), keypoints2, descriptors2); |
|
matcher.match(descriptors1, descriptors2, matches); |
|
} |
|
workEnd(); |
|
std::cout << "FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; |
|
std::cout << "FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; |
|
|
|
surf_time = getTime(); |
|
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; |
|
|
|
|
|
std::vector<Point2f> corner; |
|
Mat img_matches = drawGoodMatches(img1.getMat(ACCESS_READ), img2.getMat(ACCESS_READ), keypoints1, keypoints2, matches, corner); |
|
|
|
//-- Show detected matches |
|
|
|
namedWindow("surf matches", 0); |
|
imshow("surf matches", img_matches); |
|
imwrite(outpath, img_matches); |
|
|
|
waitKey(0); |
|
return EXIT_SUCCESS; |
|
}
|
|
|