Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
639 lines
24 KiB
639 lines
24 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jin Ma, jin@multicorewareinc.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
typedef struct _contant_struct |
|
{ |
|
cl_float c_Tb; |
|
cl_float c_TB; |
|
cl_float c_Tg; |
|
cl_float c_varInit; |
|
cl_float c_varMin; |
|
cl_float c_varMax; |
|
cl_float c_tau; |
|
cl_uchar c_shadowVal; |
|
}contant_struct; |
|
|
|
cl_mem cl_constants = NULL; |
|
float c_TB; |
|
} |
|
} |
|
|
|
#if defined _MSC_VER |
|
#define snprintf sprintf_s |
|
#endif |
|
|
|
namespace cv { namespace ocl { namespace device |
|
{ |
|
namespace mog |
|
{ |
|
void mog_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, |
|
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma); |
|
|
|
void getBackgroundImage_ocl(int cn, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures, float backgroundRatio); |
|
|
|
void loadConstants(float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, |
|
unsigned char shadowVal); |
|
|
|
void mog2_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& modesUsed, oclMat& weight, oclMat& variance, oclMat& mean, |
|
float alphaT, float prune, bool detectShadows, int nmixtures); |
|
|
|
void getBackgroundImage2_ocl(int cn, const oclMat& modesUsed, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures); |
|
} |
|
}}} |
|
|
|
namespace mog |
|
{ |
|
const int defaultNMixtures = 5; |
|
const int defaultHistory = 200; |
|
const float defaultBackgroundRatio = 0.7f; |
|
const float defaultVarThreshold = 2.5f * 2.5f; |
|
const float defaultNoiseSigma = 30.0f * 0.5f; |
|
const float defaultInitialWeight = 0.05f; |
|
} |
|
void cv::ocl::BackgroundSubtractor::operator()(const oclMat&, oclMat&, float) |
|
{ |
|
|
|
} |
|
cv::ocl::BackgroundSubtractor::~BackgroundSubtractor() |
|
{ |
|
|
|
} |
|
|
|
cv::ocl::MOG::MOG(int nmixtures) : |
|
frameSize_(0, 0), frameType_(0), nframes_(0) |
|
{ |
|
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : mog::defaultNMixtures, 8); |
|
history = mog::defaultHistory; |
|
varThreshold = mog::defaultVarThreshold; |
|
backgroundRatio = mog::defaultBackgroundRatio; |
|
noiseSigma = mog::defaultNoiseSigma; |
|
} |
|
|
|
void cv::ocl::MOG::initialize(cv::Size frameSize, int frameType) |
|
{ |
|
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); |
|
|
|
frameSize_ = frameSize; |
|
frameType_ = frameType; |
|
|
|
int ch = CV_MAT_CN(frameType); |
|
int work_ch = ch; |
|
|
|
// for each gaussian mixture of each pixel bg model we store |
|
// the mixture sort key (w/sum_of_variances), the mixture weight (w), |
|
// the mean (nchannels values) and |
|
// the diagonal covariance matrix (another nchannels values) |
|
|
|
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
|
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
|
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
|
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
|
|
|
weight_.setTo(cv::Scalar::all(0)); |
|
sortKey_.setTo(cv::Scalar::all(0)); |
|
mean_.setTo(cv::Scalar::all(0)); |
|
var_.setTo(cv::Scalar::all(0)); |
|
|
|
nframes_ = 0; |
|
} |
|
|
|
void cv::ocl::MOG::operator()(const cv::ocl::oclMat& frame, cv::ocl::oclMat& fgmask, float learningRate) |
|
{ |
|
using namespace cv::ocl::device::mog; |
|
|
|
CV_Assert(frame.depth() == CV_8U); |
|
|
|
int ch = frame.oclchannels(); |
|
int work_ch = ch; |
|
|
|
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.oclchannels()) |
|
initialize(frame.size(), frame.type()); |
|
|
|
fgmask.create(frameSize_, CV_8UC1); |
|
|
|
++nframes_; |
|
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(nframes_, history); |
|
CV_Assert(learningRate >= 0.0f); |
|
|
|
mog_ocl(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_, |
|
varThreshold, learningRate, backgroundRatio, noiseSigma); |
|
} |
|
|
|
void cv::ocl::MOG::getBackgroundImage(oclMat& backgroundImage) const |
|
{ |
|
using namespace cv::ocl::device::mog; |
|
|
|
backgroundImage.create(frameSize_, frameType_); |
|
|
|
cv::ocl::device::mog::getBackgroundImage_ocl(backgroundImage.oclchannels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio); |
|
} |
|
|
|
void cv::ocl::MOG::release() |
|
{ |
|
frameSize_ = Size(0, 0); |
|
frameType_ = 0; |
|
nframes_ = 0; |
|
|
|
weight_.release(); |
|
sortKey_.release(); |
|
mean_.release(); |
|
var_.release(); |
|
clReleaseMemObject(cl_constants); |
|
} |
|
|
|
static void mog_withoutLearning(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& mean, oclMat& var, |
|
int nmixtures, float varThreshold, float backgroundRatio) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {(size_t)frame.cols, (size_t)frame.rows, 1}; |
|
|
|
int frame_step = (int)(frame.step/frame.elemSize()); |
|
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); |
|
int weight_step = (int)(weight.step/weight.elemSize()); |
|
int mean_step = (int)(mean.step/mean.elemSize()); |
|
int var_step = (int)(var.step/var.elemSize()); |
|
|
|
int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); |
|
int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); |
|
fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); |
|
|
|
int frame_offset_y = (int)(frame.offset/frame.step); |
|
int frame_offset_x = (int)(frame.offset%frame.step); |
|
frame_offset_x = frame_offset_x/(int)frame.elemSize(); |
|
|
|
char build_option[50]; |
|
if(cn == 1) |
|
{ |
|
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
|
}else |
|
{ |
|
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
|
} |
|
|
|
String kernel_name = "mog_withoutLearning_kernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&frame.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&fgmask.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&var.data)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.cols)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&var_step)); |
|
|
|
args.push_back(make_pair(sizeof(cl_float), (void*)&varThreshold)); |
|
args.push_back(make_pair(sizeof(cl_float), (void*)&backgroundRatio)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_x)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_y)); |
|
|
|
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
|
} |
|
|
|
|
|
static void mog_withLearning(const oclMat& frame, int cn, oclMat& fgmask_raw, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, |
|
int nmixtures, float varThreshold, float backgroundRatio, float learningRate, float minVar) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {(size_t)frame.cols, (size_t)frame.rows, 1}; |
|
|
|
oclMat fgmask(fgmask_raw.size(), CV_32SC1); |
|
|
|
int frame_step = (int)(frame.step/frame.elemSize()); |
|
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); |
|
int weight_step = (int)(weight.step/weight.elemSize()); |
|
int sortKey_step = (int)(sortKey.step/sortKey.elemSize()); |
|
int mean_step = (int)(mean.step/mean.elemSize()); |
|
int var_step = (int)(var.step/var.elemSize()); |
|
|
|
int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); |
|
int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); |
|
fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); |
|
|
|
int frame_offset_y = (int)(frame.offset/frame.step); |
|
int frame_offset_x = (int)(frame.offset%frame.step); |
|
frame_offset_x = frame_offset_x/(int)frame.elemSize(); |
|
|
|
char build_option[50]; |
|
if(cn == 1) |
|
{ |
|
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
|
}else |
|
{ |
|
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
|
} |
|
|
|
String kernel_name = "mog_withLearning_kernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&frame.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&fgmask.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&sortKey.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&var.data)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.cols)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&sortKey_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&var_step)); |
|
|
|
args.push_back(make_pair(sizeof(cl_float), (void*)&varThreshold)); |
|
args.push_back(make_pair(sizeof(cl_float), (void*)&backgroundRatio)); |
|
args.push_back(make_pair(sizeof(cl_float), (void*)&learningRate)); |
|
args.push_back(make_pair(sizeof(cl_float), (void*)&minVar)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_x)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_y)); |
|
|
|
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
|
fgmask.convertTo(fgmask, CV_8U); |
|
fgmask.copyTo(fgmask_raw); |
|
} |
|
|
|
void cv::ocl::device::mog::mog_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, |
|
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma) |
|
{ |
|
const float minVar = noiseSigma * noiseSigma; |
|
|
|
if(learningRate > 0.0f) |
|
mog_withLearning(frame, cn, fgmask, weight, sortKey, mean, var, nmixtures, |
|
varThreshold, backgroundRatio, learningRate, minVar); |
|
else |
|
mog_withoutLearning(frame, cn, fgmask, weight, mean, var, nmixtures, varThreshold, backgroundRatio); |
|
} |
|
|
|
void cv::ocl::device::mog::getBackgroundImage_ocl(int cn, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures, float backgroundRatio) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {(size_t)dst.cols, (size_t)dst.rows, 1}; |
|
|
|
int weight_step = (int)(weight.step/weight.elemSize()); |
|
int mean_step = (int)(mean.step/mean.elemSize()); |
|
int dst_step = (int)(dst.step/dst.elemSize()); |
|
|
|
char build_option[50]; |
|
if(cn == 1) |
|
{ |
|
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
|
}else |
|
{ |
|
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
|
} |
|
|
|
String kernel_name = "getBackgroundImage_kernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst.cols)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
|
|
|
args.push_back(make_pair(sizeof(cl_float), (void*)&backgroundRatio)); |
|
|
|
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
|
} |
|
|
|
void cv::ocl::device::mog::loadConstants(float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal) |
|
{ |
|
varMin = cv::min(varMin, varMax); |
|
varMax = cv::max(varMin, varMax); |
|
|
|
c_TB = TB; |
|
|
|
_contant_struct *constants = new _contant_struct; |
|
constants->c_Tb = Tb; |
|
constants->c_TB = TB; |
|
constants->c_Tg = Tg; |
|
constants->c_varInit = varInit; |
|
constants->c_varMin = varMin; |
|
constants->c_varMax = varMax; |
|
constants->c_tau = tau; |
|
constants->c_shadowVal = shadowVal; |
|
|
|
cl_constants = load_constant(*((cl_context*)getClContextPtr()), *((cl_command_queue*)getClCommandQueuePtr()), |
|
(void *)constants, sizeof(_contant_struct)); |
|
} |
|
|
|
void cv::ocl::device::mog::mog2_ocl(const oclMat& frame, int cn, oclMat& fgmaskRaw, oclMat& modesUsed, oclMat& weight, oclMat& variance, |
|
oclMat& mean, float alphaT, float prune, bool detectShadows, int nmixtures) |
|
{ |
|
oclMat fgmask(fgmaskRaw.size(), CV_32SC1); |
|
|
|
Context* clCxt = Context::getContext(); |
|
|
|
const float alpha1 = 1.0f - alphaT; |
|
|
|
cl_int detectShadows_flag = 0; |
|
if(detectShadows) |
|
detectShadows_flag = 1; |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {(size_t)frame.cols, (size_t)frame.rows, 1}; |
|
|
|
int frame_step = (int)(frame.step/frame.elemSize()); |
|
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); |
|
int weight_step = (int)(weight.step/weight.elemSize()); |
|
int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize()); |
|
int mean_step = (int)(mean.step/mean.elemSize()); |
|
int var_step = (int)(variance.step/variance.elemSize()); |
|
|
|
int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); |
|
int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); |
|
fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); |
|
|
|
int frame_offset_y = (int)(frame.offset/frame.step); |
|
int frame_offset_x = (int)(frame.offset%frame.step); |
|
frame_offset_x = frame_offset_x/(int)frame.elemSize(); |
|
|
|
String kernel_name = "mog2_kernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
char build_option[50]; |
|
if(cn == 1) |
|
{ |
|
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
|
}else |
|
{ |
|
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
|
} |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&frame.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&fgmask.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&modesUsed.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&variance.data)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame.cols)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&var_step)); |
|
|
|
args.push_back(make_pair(sizeof(cl_float), (void*)&alphaT)); |
|
args.push_back(make_pair(sizeof(cl_float), (void*)&alpha1)); |
|
args.push_back(make_pair(sizeof(cl_float), (void*)&prune)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&detectShadows_flag)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_x)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&frame_offset_y)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&cl_constants)); |
|
|
|
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
|
|
|
fgmask.convertTo(fgmask, CV_8U); |
|
fgmask.copyTo(fgmaskRaw); |
|
} |
|
|
|
void cv::ocl::device::mog::getBackgroundImage2_ocl(int cn, const oclMat& modesUsed, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures) |
|
{ |
|
Context* clCxt = Context::getContext(); |
|
|
|
size_t local_thread[] = {32, 8, 1}; |
|
size_t global_thread[] = {(size_t)modesUsed.cols, (size_t)modesUsed.rows, 1}; |
|
|
|
int weight_step = (int)(weight.step/weight.elemSize()); |
|
int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize()); |
|
int mean_step = (int)(mean.step/mean.elemSize()); |
|
int dst_step = (int)(dst.step/dst.elemSize()); |
|
|
|
int dst_y = (int)(dst.offset/dst.step); |
|
int dst_x = (int)(dst.offset%dst.step); |
|
dst_x = dst_x/(int)dst.elemSize(); |
|
|
|
String kernel_name = "getBackgroundImage2_kernel"; |
|
vector< pair<size_t, const void*> > args; |
|
|
|
char build_option[50]; |
|
if(cn == 1) |
|
{ |
|
snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); |
|
}else |
|
{ |
|
snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); |
|
} |
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&modesUsed.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&weight.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&mean.data)); |
|
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data)); |
|
args.push_back(make_pair(sizeof(cl_float), (void*)&c_TB)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed.rows)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed.cols)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&modesUsed_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&weight_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&mean_step)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
|
|
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_x)); |
|
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_y)); |
|
|
|
openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); |
|
} |
|
|
|
///////////////////////////////////////////////////////////////// |
|
// MOG2 |
|
|
|
namespace mog2 |
|
{ |
|
// default parameters of gaussian background detection algorithm |
|
const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2 |
|
const float defaultVarThreshold = 4.0f * 4.0f; |
|
const int defaultNMixtures = 5; // maximal number of Gaussians in mixture |
|
const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test |
|
const float defaultVarThresholdGen = 3.0f * 3.0f; |
|
const float defaultVarInit = 15.0f; // initial variance for new components |
|
const float defaultVarMax = 5.0f * defaultVarInit; |
|
const float defaultVarMin = 4.0f; |
|
|
|
// additional parameters |
|
const float defaultfCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components |
|
const unsigned char defaultnShadowDetection = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection |
|
const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation |
|
} |
|
|
|
cv::ocl::MOG2::MOG2(int nmixtures) : frameSize_(0, 0), frameType_(0), nframes_(0) |
|
{ |
|
nmixtures_ = nmixtures > 0 ? nmixtures : mog2::defaultNMixtures; |
|
|
|
history = mog2::defaultHistory; |
|
varThreshold = mog2::defaultVarThreshold; |
|
bShadowDetection = true; |
|
|
|
backgroundRatio = mog2::defaultBackgroundRatio; |
|
fVarInit = mog2::defaultVarInit; |
|
fVarMax = mog2::defaultVarMax; |
|
fVarMin = mog2::defaultVarMin; |
|
|
|
varThresholdGen = mog2::defaultVarThresholdGen; |
|
fCT = mog2::defaultfCT; |
|
nShadowDetection = mog2::defaultnShadowDetection; |
|
fTau = mog2::defaultfTau; |
|
} |
|
|
|
void cv::ocl::MOG2::initialize(cv::Size frameSize, int frameType) |
|
{ |
|
using namespace cv::ocl::device::mog; |
|
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); |
|
|
|
frameSize_ = frameSize; |
|
frameType_ = frameType; |
|
nframes_ = 0; |
|
|
|
int ch = CV_MAT_CN(frameType); |
|
int work_ch = ch; |
|
|
|
// for each gaussian mixture of each pixel bg model we store ... |
|
// the mixture weight (w), |
|
// the mean (nchannels values) and |
|
// the covariance |
|
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
|
weight_.setTo(Scalar::all(0)); |
|
|
|
variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
|
variance_.setTo(Scalar::all(0)); |
|
|
|
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); //4 channels |
|
mean_.setTo(Scalar::all(0)); |
|
|
|
//make the array for keeping track of the used modes per pixel - all zeros at start |
|
bgmodelUsedModes_.create(frameSize_, CV_32FC1); |
|
bgmodelUsedModes_.setTo(cv::Scalar::all(0)); |
|
|
|
loadConstants(varThreshold, backgroundRatio, varThresholdGen, fVarInit, fVarMin, fVarMax, fTau, nShadowDetection); |
|
} |
|
|
|
void cv::ocl::MOG2::operator()(const oclMat& frame, oclMat& fgmask, float learningRate) |
|
{ |
|
using namespace cv::ocl::device::mog; |
|
|
|
int ch = frame.oclchannels(); |
|
int work_ch = ch; |
|
|
|
if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.oclchannels()) |
|
initialize(frame.size(), frame.type()); |
|
|
|
fgmask.create(frameSize_, CV_8UC1); |
|
fgmask.setTo(cv::Scalar::all(0)); |
|
|
|
++nframes_; |
|
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history); |
|
CV_Assert(learningRate >= 0.0f); |
|
|
|
mog2_ocl(frame, frame.oclchannels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, nmixtures_); |
|
} |
|
|
|
void cv::ocl::MOG2::getBackgroundImage(oclMat& backgroundImage) const |
|
{ |
|
using namespace cv::ocl::device::mog; |
|
|
|
backgroundImage.create(frameSize_, frameType_); |
|
|
|
cv::ocl::device::mog::getBackgroundImage2_ocl(backgroundImage.oclchannels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, nmixtures_); |
|
} |
|
|
|
void cv::ocl::MOG2::release() |
|
{ |
|
frameSize_ = Size(0, 0); |
|
frameType_ = 0; |
|
nframes_ = 0; |
|
|
|
weight_.release(); |
|
variance_.release(); |
|
mean_.release(); |
|
|
|
bgmodelUsedModes_.release(); |
|
}
|
|
|