mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
12 KiB
296 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_TEST_UTILITY_HPP__ |
|
#define __OPENCV_TEST_UTILITY_HPP__ |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// random generators |
|
|
|
int randomInt(int minVal, int maxVal); |
|
double randomDouble(double minVal, double maxVal); |
|
cv::Size randomSize(int minVal, int maxVal); |
|
cv::Scalar randomScalar(double minVal, double maxVal); |
|
cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// GpuMat create |
|
|
|
cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi = false); |
|
cv::gpu::GpuMat loadMat(const cv::Mat& m, bool useRoi = false); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Image load |
|
|
|
//! read image from testdata folder |
|
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR); |
|
|
|
//! read image from testdata folder and convert it to specified type |
|
cv::Mat readImageType(const std::string& fname, int type); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Image dumping |
|
|
|
void dumpImage(const std::string& fileName, const cv::Mat& image); |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Gpu devices |
|
|
|
//! return true if device supports specified feature and gpu module was built with support the feature. |
|
bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature); |
|
|
|
class DeviceManager |
|
{ |
|
public: |
|
static DeviceManager& instance(); |
|
|
|
void load(int i); |
|
void loadAll(); |
|
|
|
const std::vector<cv::gpu::DeviceInfo>& values() const { return devices_; } |
|
|
|
private: |
|
std::vector<cv::gpu::DeviceInfo> devices_; |
|
}; |
|
|
|
#define ALL_DEVICES testing::ValuesIn(DeviceManager::instance().values()) |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Additional assertion |
|
|
|
cv::Mat getMat(cv::InputArray arr); |
|
|
|
double checkNorm(cv::InputArray m1, cv::InputArray m2); |
|
|
|
void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat()); |
|
|
|
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1, cv::InputArray m2, double eps); |
|
|
|
#define EXPECT_MAT_NEAR(m1, m2, eps) EXPECT_PRED_FORMAT3(assertMatNear, m1, m2, eps) |
|
#define ASSERT_MAT_NEAR(m1, m2, eps) ASSERT_PRED_FORMAT3(assertMatNear, m1, m2, eps) |
|
|
|
#define EXPECT_SCALAR_NEAR(s1, s2, eps) \ |
|
{ \ |
|
EXPECT_NEAR(s1[0], s2[0], eps); \ |
|
EXPECT_NEAR(s1[1], s2[1], eps); \ |
|
EXPECT_NEAR(s1[2], s2[2], eps); \ |
|
EXPECT_NEAR(s1[3], s2[3], eps); \ |
|
} |
|
#define ASSERT_SCALAR_NEAR(s1, s2, eps) \ |
|
{ \ |
|
ASSERT_NEAR(s1[0], s2[0], eps); \ |
|
ASSERT_NEAR(s1[1], s2[1], eps); \ |
|
ASSERT_NEAR(s1[2], s2[2], eps); \ |
|
ASSERT_NEAR(s1[3], s2[3], eps); \ |
|
} |
|
|
|
#define EXPECT_POINT2_NEAR(p1, p2, eps) \ |
|
{ \ |
|
EXPECT_NEAR(p1.x, p2.x, eps); \ |
|
EXPECT_NEAR(p1.y, p2.y, eps); \ |
|
} |
|
#define ASSERT_POINT2_NEAR(p1, p2, eps) \ |
|
{ \ |
|
ASSERT_NEAR(p1.x, p2.x, eps); \ |
|
ASSERT_NEAR(p1.y, p2.y, eps); \ |
|
} |
|
|
|
#define EXPECT_POINT3_NEAR(p1, p2, eps) \ |
|
{ \ |
|
EXPECT_NEAR(p1.x, p2.x, eps); \ |
|
EXPECT_NEAR(p1.y, p2.y, eps); \ |
|
EXPECT_NEAR(p1.z, p2.z, eps); \ |
|
} |
|
#define ASSERT_POINT3_NEAR(p1, p2, eps) \ |
|
{ \ |
|
ASSERT_NEAR(p1.x, p2.x, eps); \ |
|
ASSERT_NEAR(p1.y, p2.y, eps); \ |
|
ASSERT_NEAR(p1.z, p2.z, eps); \ |
|
} |
|
|
|
double checkSimilarity(cv::InputArray m1, cv::InputArray m2); |
|
|
|
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(checkSimilarity(mat1, mat2), eps); \ |
|
} |
|
#define ASSERT_MAT_SIMILAR(mat1, mat2, eps) \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
ASSERT_LE(checkSimilarity(mat1, mat2), eps); \ |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Helper structs for value-parameterized tests |
|
|
|
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > > |
|
#define GET_PARAM(k) std::tr1::get< k >(GetParam()) |
|
|
|
namespace cv { namespace gpu |
|
{ |
|
void PrintTo(const DeviceInfo& info, std::ostream* os); |
|
}} |
|
|
|
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113)) |
|
|
|
// Depth |
|
|
|
using perf::MatDepth; |
|
|
|
//! return vector with depths from specified range. |
|
std::vector<MatDepth> depths(int depth_start, int depth_end); |
|
|
|
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F)) |
|
#define DEPTHS(depth_start, depth_end) testing::ValuesIn(depths(depth_start, depth_end)) |
|
#define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)), \ |
|
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)), \ |
|
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)), \ |
|
std::make_pair(MatDepth(CV_8U), MatDepth(CV_32S)), \ |
|
std::make_pair(MatDepth(CV_8U), MatDepth(CV_32F)), \ |
|
std::make_pair(MatDepth(CV_8U), MatDepth(CV_64F)), \ |
|
\ |
|
std::make_pair(MatDepth(CV_16U), MatDepth(CV_16U)), \ |
|
std::make_pair(MatDepth(CV_16U), MatDepth(CV_32S)), \ |
|
std::make_pair(MatDepth(CV_16U), MatDepth(CV_32F)), \ |
|
std::make_pair(MatDepth(CV_16U), MatDepth(CV_64F)), \ |
|
\ |
|
std::make_pair(MatDepth(CV_16S), MatDepth(CV_16S)), \ |
|
std::make_pair(MatDepth(CV_16S), MatDepth(CV_32S)), \ |
|
std::make_pair(MatDepth(CV_16S), MatDepth(CV_32F)), \ |
|
std::make_pair(MatDepth(CV_16S), MatDepth(CV_64F)), \ |
|
\ |
|
std::make_pair(MatDepth(CV_32S), MatDepth(CV_32S)), \ |
|
std::make_pair(MatDepth(CV_32S), MatDepth(CV_32F)), \ |
|
std::make_pair(MatDepth(CV_32S), MatDepth(CV_64F)), \ |
|
\ |
|
std::make_pair(MatDepth(CV_32F), MatDepth(CV_32F)), \ |
|
std::make_pair(MatDepth(CV_32F), MatDepth(CV_64F)), \ |
|
\ |
|
std::make_pair(MatDepth(CV_64F), MatDepth(CV_64F))) |
|
|
|
// Type |
|
|
|
using perf::MatType; |
|
|
|
//! return vector with types from specified range. |
|
std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end); |
|
|
|
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4). |
|
const std::vector<MatType>& all_types(); |
|
|
|
#define ALL_TYPES testing::ValuesIn(all_types()) |
|
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end)) |
|
|
|
// ROI |
|
|
|
class UseRoi |
|
{ |
|
public: |
|
inline UseRoi(bool val = false) : val_(val) {} |
|
|
|
inline operator bool() const { return val_; } |
|
|
|
private: |
|
bool val_; |
|
}; |
|
|
|
void PrintTo(const UseRoi& useRoi, std::ostream* os); |
|
|
|
#define WHOLE testing::Values(UseRoi(false)) |
|
#define SUBMAT testing::Values(UseRoi(true)) |
|
#define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true)) |
|
|
|
// Direct/Inverse |
|
|
|
class Inverse |
|
{ |
|
public: |
|
inline Inverse(bool val = false) : val_(val) {} |
|
|
|
inline operator bool() const { return val_; } |
|
|
|
private: |
|
bool val_; |
|
}; |
|
void PrintTo(const Inverse& useRoi, std::ostream* os); |
|
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true)) |
|
|
|
// Param class |
|
|
|
#define IMPLEMENT_PARAM_CLASS(name, type) \ |
|
class name \ |
|
{ \ |
|
public: \ |
|
name ( type arg = type ()) : val_(arg) {} \ |
|
operator type () const {return val_;} \ |
|
private: \ |
|
type val_; \ |
|
}; \ |
|
inline void PrintTo( name param, std::ostream* os) \ |
|
{ \ |
|
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ |
|
} |
|
|
|
IMPLEMENT_PARAM_CLASS(Channels, int) |
|
|
|
#define ALL_CHANNELS testing::Values(Channels(1), Channels(2), Channels(3), Channels(4)) |
|
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4)) |
|
|
|
// Flags and enums |
|
|
|
CV_ENUM(NormCode, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_TYPE_MASK, cv::NORM_RELATIVE, cv::NORM_MINMAX) |
|
|
|
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA) |
|
|
|
CV_ENUM(BorderType, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP) |
|
#define ALL_BORDER_TYPES testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)) |
|
|
|
CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WARP_INVERSE_MAP) |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Other |
|
|
|
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps); |
|
|
|
#endif // __OPENCV_TEST_UTILITY_HPP__
|
|
|