mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
6.0 KiB
145 lines
6.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#if defined(HAVE_OPENCV_XFEATURES2D) && defined(OPENCV_ENABLE_NONFREE) |
|
|
|
TEST(SurfFeaturesFinder, CanFindInROIs) |
|
{ |
|
Ptr<Feature2D> finder = xfeatures2d::SURF::create(); |
|
Mat img = imread(string(cvtest::TS::ptr()->get_data_path()) + "cv/shared/lena.png"); |
|
|
|
vector<Rect> rois; |
|
rois.push_back(Rect(0, 0, img.cols / 2, img.rows / 2)); |
|
rois.push_back(Rect(img.cols / 2, img.rows / 2, img.cols - img.cols / 2, img.rows - img.rows / 2)); |
|
|
|
// construct mask |
|
Mat mask = Mat::zeros(img.size(), CV_8U); |
|
for (const Rect &roi : rois) |
|
{ |
|
Mat(mask, roi) = 1; |
|
} |
|
|
|
detail::ImageFeatures roi_features; |
|
detail::computeImageFeatures(finder, img, roi_features, mask); |
|
|
|
int tl_rect_count = 0, br_rect_count = 0, bad_count = 0; |
|
for (const auto &keypoint : roi_features.keypoints) |
|
{ |
|
// Workaround for https://github.com/opencv/opencv/issues/26016 |
|
// To keep its behaviour, keypoint.pt casts to Point_<int>. |
|
if (rois[0].contains(Point_<int>(keypoint.pt))) |
|
tl_rect_count++; |
|
else if (rois[1].contains(Point_<int>(keypoint.pt))) |
|
br_rect_count++; |
|
else |
|
bad_count++; |
|
} |
|
|
|
EXPECT_GT(tl_rect_count, 0); |
|
EXPECT_GT(br_rect_count, 0); |
|
EXPECT_EQ(bad_count, 0); |
|
} |
|
|
|
#endif // HAVE_OPENCV_XFEATURES2D && OPENCV_ENABLE_NONFREE |
|
|
|
TEST(ParallelFeaturesFinder, IsSameWithSerial) |
|
{ |
|
Ptr<Feature2D> para_finder = ORB::create(); |
|
Ptr<Feature2D> serial_finder = ORB::create(); |
|
Mat img = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a3.png", IMREAD_GRAYSCALE); |
|
|
|
detail::ImageFeatures serial_features; |
|
detail::computeImageFeatures(serial_finder, img, serial_features); |
|
|
|
vector<Mat> imgs(50, img); |
|
vector<detail::ImageFeatures> para_features(imgs.size()); |
|
detail::computeImageFeatures(para_finder, imgs, para_features); // FIXIT This call doesn't use parallel_for_() |
|
|
|
// results must be the same |
|
Mat serial_descriptors; |
|
serial_features.descriptors.copyTo(serial_descriptors); |
|
for(size_t i = 0; i < para_features.size(); ++i) |
|
{ |
|
SCOPED_TRACE(cv::format("i=%zu", i)); |
|
EXPECT_EQ(serial_descriptors.size(), para_features[i].descriptors.size()); |
|
#if 0 // FIXIT ORB descriptors are not bit-exact (perhaps due internal parallel_for usage) |
|
ASSERT_EQ(0, cv::norm(u_serial_descriptors, para_features[i].descriptors, NORM_L1)) |
|
<< "serial_size=" << u_serial_descriptors.size() |
|
<< " par_size=" << para_features[i].descriptors.size() |
|
<< endl << u_serial_descriptors.getMat(ACCESS_READ) |
|
<< endl << endl << para_features[i].descriptors.getMat(ACCESS_READ); |
|
#endif |
|
EXPECT_EQ(serial_features.img_size, para_features[i].img_size); |
|
EXPECT_EQ(serial_features.keypoints.size(), para_features[i].keypoints.size()); |
|
} |
|
} |
|
|
|
TEST(RangeMatcher, MatchesRangeOnly) |
|
{ |
|
Ptr<Feature2D> finder = ORB::create(); |
|
|
|
Mat img0 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a1.png", IMREAD_GRAYSCALE); |
|
Mat img1 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a2.png", IMREAD_GRAYSCALE); |
|
Mat img2 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a3.png", IMREAD_GRAYSCALE); |
|
|
|
vector<detail::ImageFeatures> features(3); |
|
|
|
computeImageFeatures(finder, img0, features[0]); |
|
computeImageFeatures(finder, img1, features[1]); |
|
computeImageFeatures(finder, img2, features[2]); |
|
|
|
vector<detail::MatchesInfo> pairwise_matches; |
|
Ptr<detail::FeaturesMatcher> matcher = makePtr<detail::BestOf2NearestRangeMatcher>(1); |
|
|
|
(*matcher)(features, pairwise_matches); |
|
|
|
// matches[1] will be image 0 and image 1, should have non-zero confidence |
|
EXPECT_NE(pairwise_matches[1].confidence, .0); |
|
|
|
// matches[2] will be image 0 and image 2, should have zero confidence due to range_width=1 |
|
EXPECT_DOUBLE_EQ(pairwise_matches[2].confidence, .0); |
|
} |
|
|
|
}} // namespace
|
|
|