mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
304 lines
11 KiB
304 lines
11 KiB
// ////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
// |
|
|
|
// ////////////////////////////////////////////////////////////////////////////////////// |
|
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu |
|
// |
|
// LICENSE AGREEMENT |
|
// Copyright (c) 2015 The Regents of the University of California (Regents) |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are met: |
|
// 1. Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// 2. Redistributions in binary form must reproduce the above copyright |
|
// notice, this list of conditions and the following disclaimer in the |
|
// documentation and/or other materials provided with the distribution. |
|
// 3. Neither the name of the University nor the |
|
// names of its contributors may be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY |
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY |
|
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
|
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
|
|
var haarcascade_data = undefined; |
|
if (typeof module !== 'undefined' && module.exports) { |
|
// The environment is Node.js |
|
let fs = require("fs"); |
|
haarcascade_data = fs.readFileSync("haarcascade_frontalface_default.xml"); |
|
} |
|
|
|
QUnit.module('Object Detection', {}); |
|
QUnit.test('Cascade classification', function(assert) { |
|
// Group rectangle |
|
{ |
|
let rectList = new cv.RectVector(); |
|
let weights = new cv.IntVector(); |
|
let groupThreshold = 1; |
|
const eps = 0.2; |
|
|
|
let rect1 = new cv.Rect(1, 2, 3, 4); |
|
let rect2 = new cv.Rect(1, 4, 2, 3); |
|
|
|
rectList.push_back(rect1); |
|
rectList.push_back(rect2); |
|
|
|
cv.groupRectangles(rectList, weights, groupThreshold, eps); |
|
|
|
|
|
rectList.delete(); |
|
weights.delete(); |
|
} |
|
|
|
// CascadeClassifier |
|
{ |
|
if (haarcascade_data) { |
|
cv.FS_createDataFile("/", "haarcascade_frontalface_default.xml", haarcascade_data, true, false, false); |
|
} |
|
|
|
let classifier = new cv.CascadeClassifier(); |
|
const modelPath = '/haarcascade_frontalface_default.xml'; |
|
|
|
assert.equal(classifier.empty(), true); |
|
|
|
|
|
classifier.load(modelPath); |
|
assert.equal(classifier.empty(), false); |
|
|
|
let image = cv.Mat.eye({height: 10, width: 10}, cv.CV_8UC3); |
|
let objects = new cv.RectVector(); |
|
let numDetections = new cv.IntVector(); |
|
const scaleFactor = 1.1; |
|
const minNeighbors = 3; |
|
const flags = 0; |
|
const minSize = {height: 0, width: 0}; |
|
const maxSize = {height: 10, width: 10}; |
|
|
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, |
|
minNeighbors, flags, minSize, maxSize); |
|
|
|
// test default parameters |
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, |
|
minNeighbors, flags, minSize); |
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, |
|
minNeighbors, flags); |
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, |
|
minNeighbors); |
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor); |
|
|
|
classifier.delete(); |
|
objects.delete(); |
|
numDetections.delete(); |
|
} |
|
|
|
// HOGDescriptor |
|
{ |
|
let hog = new cv.HOGDescriptor(); |
|
let mat = new cv.Mat({height: 10, width: 10}, cv.CV_8UC1); |
|
let descriptors = new cv.FloatVector(); |
|
let locations = new cv.PointVector(); |
|
|
|
|
|
assert.equal(hog.winSize.height, 128); |
|
assert.equal(hog.winSize.width, 64); |
|
assert.equal(hog.nbins, 9); |
|
assert.equal(hog.derivAperture, 1); |
|
assert.equal(hog.winSigma, -1); |
|
assert.equal(hog.histogramNormType, 0); |
|
assert.equal(hog.nlevels, 64); |
|
|
|
hog.nlevels = 32; |
|
assert.equal(hog.nlevels, 32); |
|
|
|
hog.delete(); |
|
mat.delete(); |
|
descriptors.delete(); |
|
locations.delete(); |
|
} |
|
}); |
|
QUnit.test('QR code detect and decode', function (assert) { |
|
{ |
|
const detector = new cv.QRCodeDetector(); |
|
let mat = cv.Mat.ones(800, 600, cv.CV_8U); |
|
assert.ok(mat); |
|
|
|
// test detect |
|
let points = new cv.Mat(); |
|
let qrCodeFound = detector.detect(mat, points); |
|
assert.equal(points.rows, 0) |
|
assert.equal(points.cols, 0) |
|
assert.equal(qrCodeFound, false); |
|
|
|
// test detectMult |
|
qrCodeFound = detector.detectMulti(mat, points); |
|
assert.equal(points.rows, 0) |
|
assert.equal(points.cols, 0) |
|
assert.equal(qrCodeFound, false); |
|
|
|
// test decode (with random numbers) |
|
let decodeTestPoints = cv.matFromArray(1, 4, cv.CV_32FC2, [10, 20, 30, 40, 60, 80, 90, 100]); |
|
let qrCodeContent = detector.decode(mat, decodeTestPoints); |
|
assert.equal(typeof qrCodeContent, 'string'); |
|
assert.equal(qrCodeContent, ''); |
|
|
|
//test detectAndDecode |
|
qrCodeContent = detector.detectAndDecode(mat); |
|
assert.equal(typeof qrCodeContent, 'string'); |
|
assert.equal(qrCodeContent, ''); |
|
|
|
// test decodeCurved |
|
qrCodeContent = detector.decodeCurved(mat, decodeTestPoints); |
|
assert.equal(typeof qrCodeContent, 'string'); |
|
assert.equal(qrCodeContent, ''); |
|
|
|
decodeTestPoints.delete(); |
|
points.delete(); |
|
mat.delete(); |
|
|
|
} |
|
}); |
|
QUnit.test('Aruco-based QR code detect', function (assert) { |
|
{ |
|
let qrcode_params = new cv.QRCodeDetectorAruco_Params(); |
|
let detector = new cv.QRCodeDetectorAruco(); |
|
let mat = cv.Mat.ones(800, 600, cv.CV_8U); |
|
assert.ok(mat); |
|
|
|
detector.setDetectorParameters(qrcode_params); |
|
|
|
let points = new cv.Mat(); |
|
let qrCodeFound = detector.detect(mat, points); |
|
assert.equal(points.rows, 0) |
|
assert.equal(points.cols, 0) |
|
assert.equal(qrCodeFound, false); |
|
|
|
qrcode_params.delete(); |
|
detector.delete(); |
|
points.delete(); |
|
mat.delete(); |
|
} |
|
}); |
|
QUnit.test('Bar code detect', function (assert) { |
|
{ |
|
let detector = new cv.barcode_BarcodeDetector(); |
|
let mat = cv.Mat.ones(800, 600, cv.CV_8U); |
|
assert.ok(mat); |
|
|
|
let points = new cv.Mat(); |
|
let codeFound = detector.detect(mat, points); |
|
assert.equal(points.rows, 0) |
|
assert.equal(points.cols, 0) |
|
assert.equal(codeFound, false); |
|
|
|
codeContent = detector.detectAndDecode(mat); |
|
assert.equal(typeof codeContent, 'string'); |
|
assert.equal(codeContent, ''); |
|
|
|
detector.delete(); |
|
points.delete(); |
|
mat.delete(); |
|
} |
|
}); |
|
QUnit.test('Aruco detector', function (assert) { |
|
{ |
|
let dictionary = cv.getPredefinedDictionary(cv.DICT_4X4_50); |
|
let aruco_image = new cv.Mat(); |
|
let detectorParameters = new cv.aruco_DetectorParameters(); |
|
let refineParameters = new cv.aruco_RefineParameters(10, 3, true); |
|
let detector = new cv.aruco_ArucoDetector(dictionary, detectorParameters,refineParameters); |
|
let corners = new cv.MatVector(); |
|
let ids = new cv.Mat(); |
|
|
|
dictionary.generateImageMarker(10, 128, aruco_image); |
|
assert.ok(!aruco_image.empty()); |
|
|
|
detector.detectMarkers(aruco_image, corners, ids); |
|
|
|
dictionary.delete(); |
|
aruco_image.delete(); |
|
detectorParameters.delete(); |
|
refineParameters.delete(); |
|
detector.delete(); |
|
corners.delete(); |
|
ids.delete(); |
|
} |
|
}); |
|
QUnit.test('Charuco detector', function (assert) { |
|
{ |
|
let dictionary = new cv.getPredefinedDictionary(cv.DICT_4X4_50); |
|
let boardIds = new cv.Mat(); |
|
let board = new cv.aruco_CharucoBoard(new cv.Size(3, 5), 64, 32, dictionary, boardIds); |
|
let charucoParameters = new cv.aruco_CharucoParameters(); |
|
let detectorParameters = new cv.aruco_DetectorParameters(); |
|
let refineParameters = new cv.aruco_RefineParameters(10, 3, true); |
|
let detector = new cv.aruco_CharucoDetector(board, charucoParameters, detectorParameters, refineParameters); |
|
let board_image = new cv.Mat(); |
|
let corners = new cv.Mat(); |
|
let ids = new cv.Mat(); |
|
|
|
board.generateImage(new cv.Size(300, 500), board_image); |
|
assert.ok(!board_image.empty()); |
|
|
|
detector.detectBoard(board_image, corners, ids); |
|
assert.ok(!corners.empty()); |
|
assert.ok(!ids.empty()); |
|
|
|
dictionary.delete(); |
|
boardIds.delete(); |
|
board.delete(); |
|
board_image.delete(); |
|
charucoParameters.delete(); |
|
detectorParameters.delete(); |
|
refineParameters.delete(); |
|
detector.delete(); |
|
corners.delete(); |
|
ids.delete(); |
|
} |
|
});
|
|
|