mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
8.6 KiB
275 lines
8.6 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#ifdef HAVE_JPEG |
|
|
|
/** |
|
* Test for check whether reading exif orientation tag was processed successfully or not |
|
* The test info is the set of 8 images named testExifRotate_{1 to 8}.jpg |
|
* The test image is the square 10x10 points divided by four sub-squares: |
|
* (R corresponds to Red, G to Green, B to Blue, W to white) |
|
* --------- --------- |
|
* | R | G | | G | R | |
|
* |-------| - (tag 1) |-------| - (tag 2) |
|
* | B | W | | W | B | |
|
* --------- --------- |
|
* |
|
* --------- --------- |
|
* | W | B | | B | W | |
|
* |-------| - (tag 3) |-------| - (tag 4) |
|
* | G | R | | R | G | |
|
* --------- --------- |
|
* |
|
* --------- --------- |
|
* | R | B | | G | W | |
|
* |-------| - (tag 5) |-------| - (tag 6) |
|
* | G | W | | R | B | |
|
* --------- --------- |
|
* |
|
* --------- --------- |
|
* | W | G | | B | R | |
|
* |-------| - (tag 7) |-------| - (tag 8) |
|
* | B | R | | W | G | |
|
* --------- --------- |
|
* |
|
* |
|
* Every image contains exif field with orientation tag (0x112) |
|
* After reading each image the corresponding matrix must be read as |
|
* --------- |
|
* | R | G | |
|
* |-------| |
|
* | B | W | |
|
* --------- |
|
* |
|
*/ |
|
|
|
typedef testing::TestWithParam<string> Imgcodecs_Jpeg_Exif; |
|
|
|
TEST_P(Imgcodecs_Jpeg_Exif, exif_orientation) |
|
{ |
|
const string root = cvtest::TS::ptr()->get_data_path(); |
|
const string filename = root + GetParam(); |
|
const int colorThresholdHigh = 250; |
|
const int colorThresholdLow = 5; |
|
|
|
Mat m_img = imread(filename); |
|
ASSERT_FALSE(m_img.empty()); |
|
Vec3b vec; |
|
|
|
//Checking the first quadrant (with supposed red) |
|
vec = m_img.at<Vec3b>(2, 2); //some point inside the square |
|
EXPECT_LE(vec.val[0], colorThresholdLow); |
|
EXPECT_LE(vec.val[1], colorThresholdLow); |
|
EXPECT_GE(vec.val[2], colorThresholdHigh); |
|
|
|
//Checking the second quadrant (with supposed green) |
|
vec = m_img.at<Vec3b>(2, 7); //some point inside the square |
|
EXPECT_LE(vec.val[0], colorThresholdLow); |
|
EXPECT_GE(vec.val[1], colorThresholdHigh); |
|
EXPECT_LE(vec.val[2], colorThresholdLow); |
|
|
|
//Checking the third quadrant (with supposed blue) |
|
vec = m_img.at<Vec3b>(7, 2); //some point inside the square |
|
EXPECT_GE(vec.val[0], colorThresholdHigh); |
|
EXPECT_LE(vec.val[1], colorThresholdLow); |
|
EXPECT_LE(vec.val[2], colorThresholdLow); |
|
} |
|
|
|
const string exif_files[] = |
|
{ |
|
"readwrite/testExifOrientation_1.jpg", |
|
"readwrite/testExifOrientation_2.jpg", |
|
"readwrite/testExifOrientation_3.jpg", |
|
"readwrite/testExifOrientation_4.jpg", |
|
"readwrite/testExifOrientation_5.jpg", |
|
"readwrite/testExifOrientation_6.jpg", |
|
"readwrite/testExifOrientation_7.jpg", |
|
"readwrite/testExifOrientation_8.jpg" |
|
}; |
|
|
|
INSTANTIATE_TEST_CASE_P(ExifFiles, Imgcodecs_Jpeg_Exif, |
|
testing::ValuesIn(exif_files)); |
|
|
|
//================================================================================================== |
|
|
|
TEST(Imgcodecs_Jpeg, encode_empty) |
|
{ |
|
cv::Mat img; |
|
std::vector<uchar> jpegImg; |
|
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception); |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_progressive_jpeg) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_JPEG_PROGRESSIVE); |
|
params.push_back(1); |
|
|
|
string output_progressive = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params)); |
|
cv::Mat img_jpg_progressive = cv::imread(output_progressive); |
|
|
|
string output_normal = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img)); |
|
cv::Mat img_jpg_normal = cv::imread(output_normal); |
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_progressive, img_jpg_normal, NORM_INF)); |
|
|
|
EXPECT_EQ(0, remove(output_progressive.c_str())); |
|
EXPECT_EQ(0, remove(output_normal.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_optimize_jpeg) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_JPEG_OPTIMIZE); |
|
params.push_back(1); |
|
|
|
string output_optimized = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_optimized, img, params)); |
|
cv::Mat img_jpg_optimized = cv::imread(output_optimized); |
|
|
|
string output_normal = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img)); |
|
cv::Mat img_jpg_normal = cv::imread(output_normal); |
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_optimized, img_jpg_normal, NORM_INF)); |
|
|
|
EXPECT_EQ(0, remove(output_optimized.c_str())); |
|
EXPECT_EQ(0, remove(output_normal.c_str())); |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_rst_jpeg) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png"; |
|
cv::Mat img = cv::imread(input); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<int> params; |
|
params.push_back(IMWRITE_JPEG_RST_INTERVAL); |
|
params.push_back(1); |
|
|
|
string output_rst = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_rst, img, params)); |
|
cv::Mat img_jpg_rst = cv::imread(output_rst); |
|
|
|
string output_normal = cv::tempfile(".jpg"); |
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img)); |
|
cv::Mat img_jpg_normal = cv::imread(output_normal); |
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_rst, img_jpg_normal, NORM_INF)); |
|
|
|
EXPECT_EQ(0, remove(output_rst.c_str())); |
|
EXPECT_EQ(0, remove(output_normal.c_str())); |
|
} |
|
|
|
//================================================================================================== |
|
|
|
static const uint32_t default_sampling_factor = static_cast<uint32_t>(0x221111); |
|
|
|
static uint32_t test_jpeg_subsampling( const Mat src, const vector<int> param ) |
|
{ |
|
vector<uint8_t> jpeg; |
|
|
|
if ( cv::imencode(".jpg", src, jpeg, param ) == false ) |
|
{ |
|
return 0; |
|
} |
|
|
|
if ( src.channels() != 3 ) |
|
{ |
|
return 0; |
|
} |
|
|
|
// Find SOF Marker(FFC0) |
|
int sof_offset = 0; // not found. |
|
int jpeg_size = static_cast<int>( jpeg.size() ); |
|
for ( int i = 0 ; i < jpeg_size - 1; i++ ) |
|
{ |
|
if ( (jpeg[i] == 0xff ) && ( jpeg[i+1] == 0xC0 ) ) |
|
{ |
|
sof_offset = i; |
|
break; |
|
} |
|
} |
|
if ( sof_offset == 0 ) |
|
{ |
|
return 0; |
|
} |
|
|
|
// Extract Subsampling Factor from SOF. |
|
return ( jpeg[sof_offset + 0x0A + 3 * 0 + 1] << 16 ) + |
|
( jpeg[sof_offset + 0x0A + 3 * 1 + 1] << 8 ) + |
|
( jpeg[sof_offset + 0x0A + 3 * 2 + 1] ) ; |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_subsamplingfactor_default) |
|
{ |
|
vector<int> param; |
|
Mat src( 48, 64, CV_8UC3, cv::Scalar::all(0) ); |
|
EXPECT_EQ( default_sampling_factor, test_jpeg_subsampling(src, param) ); |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_subsamplingfactor_usersetting_valid) |
|
{ |
|
Mat src( 48, 64, CV_8UC3, cv::Scalar::all(0) ); |
|
const uint32_t sampling_factor_list[] = { |
|
IMWRITE_JPEG_SAMPLING_FACTOR_411, |
|
IMWRITE_JPEG_SAMPLING_FACTOR_420, |
|
IMWRITE_JPEG_SAMPLING_FACTOR_422, |
|
IMWRITE_JPEG_SAMPLING_FACTOR_440, |
|
IMWRITE_JPEG_SAMPLING_FACTOR_444, |
|
}; |
|
const int sampling_factor_list_num = 5; |
|
|
|
for ( int i = 0 ; i < sampling_factor_list_num; i ++ ) |
|
{ |
|
vector<int> param; |
|
param.push_back( IMWRITE_JPEG_SAMPLING_FACTOR ); |
|
param.push_back( sampling_factor_list[i] ); |
|
EXPECT_EQ( sampling_factor_list[i], test_jpeg_subsampling(src, param) ); |
|
} |
|
} |
|
|
|
TEST(Imgcodecs_Jpeg, encode_subsamplingfactor_usersetting_invalid) |
|
{ |
|
Mat src( 48, 64, CV_8UC3, cv::Scalar::all(0) ); |
|
const uint32_t sampling_factor_list[] = { // Invalid list |
|
0x111112, |
|
0x000000, |
|
0x001111, |
|
0xFF1111, |
|
0x141111, // 1x4,1x1,1x1 - unknown |
|
0x241111, // 2x4,1x1,1x1 - unknown |
|
0x421111, // 4x2,1x1,1x1 - unknown |
|
0x441111, // 4x4,1x1,1x1 - 410(libjpeg cannot handle it) |
|
}; |
|
const int sampling_factor_list_num = 8; |
|
|
|
for ( int i = 0 ; i < sampling_factor_list_num; i ++ ) |
|
{ |
|
vector<int> param; |
|
param.push_back( IMWRITE_JPEG_SAMPLING_FACTOR ); |
|
param.push_back( sampling_factor_list[i] ); |
|
EXPECT_EQ( default_sampling_factor, test_jpeg_subsampling(src, param) ); |
|
} |
|
} |
|
|
|
#endif // HAVE_JPEG |
|
|
|
}} // namespace
|
|
|