mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
3.6 KiB
65 lines
3.6 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
MSER detector test |
|
''' |
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
class mser_test(NewOpenCVTests): |
|
def test_mser(self): |
|
|
|
img = self.get_sample('cv/mser/puzzle.png', 0) |
|
smallImg = [ |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], |
|
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255] |
|
] |
|
thresharr = [ 0, 70, 120, 180, 255 ] |
|
kDelta = 5 |
|
np.random.seed(10) |
|
|
|
for i in range(100): |
|
|
|
use_big_image = int(np.random.rand(1,1)*7) != 0 |
|
invert = int(np.random.rand(1,1)*2) != 0 |
|
binarize = int(np.random.rand(1,1)*5) != 0 if use_big_image else False |
|
blur = True #int(np.random.rand(1,1)*2) != 0 #binarized images are processed incorrectly |
|
thresh = thresharr[int(np.random.rand(1,1)*5)] |
|
src0 = img if use_big_image else np.array(smallImg).astype('uint8') |
|
src = src0.copy() |
|
|
|
kMinArea = 256 if use_big_image else 10 |
|
kMaxArea = int(src.shape[0]*src.shape[1]/4) |
|
|
|
mserExtractor = cv2.MSER(kDelta, kMinArea, kMaxArea) |
|
if invert: |
|
cv2.bitwise_not(src, src) |
|
if binarize: |
|
_, src = cv2.threshold(src, thresh, 255, cv2.THRESH_BINARY) |
|
if blur: |
|
src = cv2.GaussianBlur(src, (5, 5), 1.5, 1.5) |
|
minRegs = 7 if use_big_image else 2 |
|
maxRegs = 1000 if use_big_image else 15 |
|
if binarize and (thresh == 0 or thresh == 255): |
|
minRegs = maxRegs = 0 |
|
msers = mserExtractor.detect(src) |
|
nmsers = len(msers) |
|
self.assertLessEqual(minRegs, nmsers) |
|
self.assertGreaterEqual(maxRegs, nmsers) |