mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.4 KiB
96 lines
3.4 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Lucas-Kanade homography tracker test |
|
=============================== |
|
Uses goodFeaturesToTrack for track initialization and back-tracking for match verification |
|
between frames. Finds homography between reference and current views. |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
#local modules |
|
from tst_scene_render import TestSceneRender |
|
from tests_common import NewOpenCVTests, isPointInRect |
|
|
|
lk_params = dict( winSize = (19, 19), |
|
maxLevel = 2, |
|
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) |
|
|
|
feature_params = dict( maxCorners = 1000, |
|
qualityLevel = 0.01, |
|
minDistance = 8, |
|
blockSize = 19 ) |
|
|
|
def checkedTrace(img0, img1, p0, back_threshold = 1.0): |
|
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) |
|
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) |
|
d = abs(p0-p0r).reshape(-1, 2).max(-1) |
|
status = d < back_threshold |
|
return p1, status |
|
|
|
class lk_homography_test(NewOpenCVTests): |
|
|
|
render = None |
|
framesCounter = 0 |
|
frame = frame0 = None |
|
p0 = None |
|
p1 = None |
|
gray0 = gray1 = None |
|
numFeaturesInRectOnStart = 0 |
|
|
|
def test_lk_homography(self): |
|
self.render = TestSceneRender(self.get_sample('samples/python2/data/graf1.png'), |
|
self.get_sample('samples/c/box.png'), noise = 0.1, speed = 1.0) |
|
|
|
frame = self.render.getNextFrame() |
|
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
self.frame0 = frame.copy() |
|
self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params) |
|
|
|
isForegroundHomographyFound = False |
|
|
|
if self.p0 is not None: |
|
self.p1 = self.p0 |
|
self.gray0 = frame_gray |
|
self.gray1 = frame_gray |
|
currRect = self.render.getCurrentRect() |
|
for (x,y) in self.p0[:,0]: |
|
if isPointInRect((x,y), currRect): |
|
self.numFeaturesInRectOnStart += 1 |
|
|
|
while self.framesCounter < 200: |
|
self.framesCounter += 1 |
|
frame = self.render.getNextFrame() |
|
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
if self.p0 is not None: |
|
p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1) |
|
|
|
self.p1 = p2[trace_status].copy() |
|
self.p0 = self.p0[trace_status].copy() |
|
self.gray1 = frame_gray |
|
|
|
if len(self.p0) < 4: |
|
self.p0 = None |
|
continue |
|
H, status = cv2.findHomography(self.p0, self.p1, cv2.RANSAC, 5.0) |
|
|
|
goodPointsInRect = 0 |
|
goodPointsOutsideRect = 0 |
|
for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]): |
|
if good: |
|
if isPointInRect((x1,y1), self.render.getCurrentRect()): |
|
goodPointsInRect += 1 |
|
else: goodPointsOutsideRect += 1 |
|
|
|
if goodPointsOutsideRect < goodPointsInRect: |
|
isForegroundHomographyFound = True |
|
self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6) |
|
else: |
|
p = cv2.goodFeaturesToTrack(frame_gray, **feature_params) |
|
|
|
self.assertEqual(isForegroundHomographyFound, True) |