/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "../op_cuda.hpp" #include "../op_inf_engine.hpp" #include "../ie_ngraph.hpp" #include "../op_cann.hpp" #include "layers_common.hpp" #include #include #ifdef HAVE_OPENCL #include "opencl_kernels_dnn.hpp" #endif #ifdef HAVE_CUDA #include "../cuda4dnn/primitives/slice.hpp" using namespace cv::dnn::cuda4dnn; #endif namespace cv { namespace dnn { Range normalizeRange(const Range& input_range, int n) { Range range = input_range; range.start = std::min(std::max(range.start, -n), n - 1); if (range.start < 0) { range.start += n; } range.end = std::min(std::max(range.end, -n), n); if (range.end < 0) { range.end += n; } return range; } // TODO: support cv::Range with steps and negative steps to get rid of this transformation void tranformForNegSteps(const MatShape& inpShape, std::vector >& sliceRanges, std::vector >& sliceSteps) { // in case of negative steps, // x of shape [5, 10], x[5:0:-1, 10:1:-3] <=> np.flip(x[1:5:1, 2:10:3], aixs=(0, 1)) // new_end_i = start_i + 1 > dim_i ? dim_i : start_i + 1 // new_start_i = end + 1 // new_start_i = new_end_i - 1 - ((new_end_i - 1 - new_start_i) / abs(step_i)) * abs(step_i) int start, end, new_start, new_end, step; for (int i = 0; i < sliceSteps[0].size(); ++i) { step = sliceSteps[0][i]; if (step > 0) continue; step = -step; start = sliceRanges[0][i].start; end = sliceRanges[0][i].end; new_end = start >= inpShape[i] ? inpShape[i] : start + 1; new_start = end + 1; new_start = new_end - 1 - ((new_end - 1 - new_start) / step) * step; sliceSteps[0][i] = step; sliceRanges[0][i].start = new_start; sliceRanges[0][i].end = new_end; } } std::vector > finalizeSliceRange(const MatShape& inpShape, int& axis, const std::vector >& inputSliceRanges) { std::vector > sliceRanges = inputSliceRanges; CV_Assert(inpShape.size() > 0); bool axisNeg = (axis < 0); axis = (axis + static_cast(inpShape.size())) % inpShape.size(); for (size_t i = 0; i < sliceRanges.size(); ++i){ std::vector& ranges = sliceRanges[i]; if (axisNeg) { ranges.insert(ranges.begin(), axis, Range::all()); } for (size_t j = 0; j < ranges.size(); ++j) { int n = inpShape[j]; if (n <= 0) { continue; } ranges[j] = normalizeRange(ranges[j], n); } } return sliceRanges; } class SliceLayerImpl : public SliceLayer { public: SliceLayerImpl(const LayerParams& params) { setParamsFrom(params); hasSteps = false; axis = params.get("axis", 1); num_split = params.get("num_split", 0); hasDynamicShapes = params.get("has_dynamic_shapes", false); shapesInitialized = !hasDynamicShapes; if (params.has("slice_point")) { CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end")); const DictValue &indicesValue = params.get("slice_point"); int size = axis > 0 ? axis + 1 : 1; sliceRanges.resize(indicesValue.size() + 1, std::vector(size, Range::all())); int prevSlice = 0; for (int i = 0; i < indicesValue.size(); ++i) { sliceRanges[i][size - 1].start = prevSlice; sliceRanges[i][size - 1].end = indicesValue.get(i); prevSlice = sliceRanges[i][size - 1].end; } sliceRanges.back()[size - 1].start = prevSlice; } else if (params.has("begin")) { CV_Assert(params.has("size") ^ params.has("end")); const DictValue &begins = params.get("begin"); const DictValue &sizesOrEnds = params.has("size") ? params.get("size") : params.get("end"); CV_Assert(begins.size() == sizesOrEnds.size()); if (params.has("steps")) { const DictValue &steps = params.get("steps"); sliceSteps.resize(1); sliceSteps[0].resize(steps.size()); for (int i = 0; i < steps.size(); ++i) { int step = steps.get(i); CV_Assert(step != 0); if (step < 0) neg_step_dims.push_back(i); if (std::abs(step) > 1) hasSteps = true; sliceSteps[0][i] = step; } } sliceRanges.resize(1); sliceRanges[0].resize(begins.size(), Range::all()); for (int i = 0; i < begins.size(); ++i) { int start = begins.get(i); int sizeOrEnd = sizesOrEnds.get(i); // It may be negative to reverse indexation. sliceRanges[0][i].start = start; if (params.has("size")) { int size = sizeOrEnd; CV_Assert(size == -1 || size > 0); // -1 value means range [start, axis_size). sliceRanges[0][i].end = size > 0 ? (start + size) : INT_MAX; // We'll finalize a negative value later. } else { int end = sizeOrEnd; if (hasSteps && !neg_step_dims.empty() && sliceSteps[0][i] < 0) CV_Assert(end < 0 || end != start); // if current step is negative, end < start is allowed. else CV_Assert(end < 0 || end > start); // End index is excluded. sliceRanges[0][i].end = end; // We'll finalize a negative value later. } } } } virtual bool supportBackend(int backendId) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) return sliceRanges.size() == 1 && !hasSteps && neg_step_dims.empty(); #endif #ifdef HAVE_CUDA if (backendId == DNN_BACKEND_CUDA) return !hasSteps && neg_step_dims.empty(); #endif return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CANN; } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(inputs.size() == 1); MatShape inpShape = inputs[0]; std::vector > sliceSteps_ = sliceSteps; std::vector > sliceRanges_ = sliceRanges; if (hasSteps && !neg_step_dims.empty()) tranformForNegSteps(inpShape, sliceRanges_, sliceSteps_); int axis_rw = axis; std::vector > sliceRanges_rw = finalizeSliceRange(inpShape, axis_rw, sliceRanges_); if (!sliceRanges_rw.empty()) { outputs.resize(sliceRanges_rw.size(), inpShape); for (int i = 0; i < outputs.size(); ++i) { CV_Assert(sliceRanges_rw[i].size() <= inpShape.size()); for (int j = 0; j < sliceRanges_rw[i].size(); ++j) { if (shapesInitialized || inpShape[j] > 0) outputs[i][j] = normalizeRange(sliceRanges_rw[i][j], inpShape[j]).size(); if (!sliceSteps_.empty() && (i < sliceSteps_.size()) && (j < sliceSteps_[i].size()) && (sliceSteps_[i][j] > 1)) outputs[i][j] = (outputs[i][j] + sliceSteps_[i][j] - 1) / sliceSteps_[i][j]; } } } else // Divide input blob on equal parts by axis. { CV_Assert(0 <= axis_rw && axis_rw < inpShape.size()); int splits = num_split ? num_split : requiredOutputs; CV_Assert(splits > 0 && inpShape[axis_rw] % splits == 0); inpShape[axis_rw] /= splits; outputs.resize(splits, inpShape); } return false; } bool updateMemoryShapes(const std::vector &inputs) CV_OVERRIDE { shapesInitialized = true; return true; } void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { #ifdef HAVE_OPENCL ocl_exec_cache.clear(); #endif std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); CV_Assert(inputs.size() == 1); MatShape inpShape = shape(inputs[0]); if (hasSteps && !neg_step_dims.empty()) tranformForNegSteps(inpShape, sliceRanges, sliceSteps); finalSliceRanges = finalizeSliceRange(shape(inputs[0]), axis, sliceRanges); if (sliceRanges.empty()) { // Divide input blob on equal parts by axis. int outAxisSize = inpShape[axis] / outputs.size(); finalSliceRanges.resize(outputs.size(), std::vector(axis + 1, Range::all())); int prevSlice = 0; for (int i = 0; i < outputs.size(); ++i) { finalSliceRanges[i][axis].start = prevSlice; finalSliceRanges[i][axis].end = finalSliceRanges[i][axis].start + outAxisSize; prevSlice = finalSliceRanges[i][axis].end; } } else CV_Assert(outputs.size() == sliceRanges.size()); for (int i = 0; i < outputs.size(); ++i) { CV_Assert(finalSliceRanges[i].size() <= inpShape.size()); // Fill the rest of ranges. for (int j = finalSliceRanges[i].size(); j < inpShape.size(); ++j) { finalSliceRanges[i].push_back(Range::all()); } // Clamp. for (int j = 0; j < finalSliceRanges[i].size(); ++j) { finalSliceRanges[i][j] = normalizeRange(finalSliceRanges[i][j], inpShape[j]); } } if (!sliceSteps.empty() && sliceSteps[0].size() != inputs[0].dims) sliceSteps[0].resize(inputs[0].dims, 1); #if 0 std::cout << "DEBUG: DNN/Slice: " << outputs.size() << " inpShape=" << inpShape << std::endl; for (int i = 0; i < outputs.size(); ++i) { for (int j = 0; j < finalSliceRanges[i].size(); ++j) { std::cout << finalSliceRanges[i][j]; } std::cout << std::endl; } #endif } #ifdef HAVE_OPENCL struct OpenCLExecInfo { std::string kernel_name; std::string build_opts; size_t local_size[2]; size_t global_size[2]; OpenCLExecInfo() { local_size[0] = local_size[1] = 0; global_size[0] = global_size[1] = 0; } }; std::vector ocl_exec_cache; void ocl_prepare(const std::vector& inputs, const std::vector& outputs) { CV_TRACE_FUNCTION(); CV_Assert(outputs.size() == finalSliceRanges.size()); ocl_exec_cache.resize(outputs.size()); const UMat& input = inputs[0]; const int dims = input.dims; size_t WSZ = 128; const int elemSize = (int)input.elemSize(); String opts0 = cv::format( "-DDIMS=%d -DELEMSIZE=%d", dims, elemSize ); for (int d = 0; d < dims; d++) { opts0 += cv::format(" -DSRC_STEP_%d=%d", d, (int)input.step[dims - 1 - d]); } for (size_t i = 0; i < outputs.size(); i++) { OpenCLExecInfo& ocl = ocl_exec_cache[i]; const UMat& output = outputs[i]; const std::vector& range = finalSliceRanges[i]; String opts = opts0; CV_CheckEQ(output.dims, dims, ""); for (int d = 0; d < dims; d++) { opts += cv::format(" -DDST_STEP_%d=%d -DDST_SZ_%d=%d -DSRC_START_%d=%d", d, (int)output.step[dims - 1 - d], d, (int)output.size[dims - 1 - d], d, (int)range[dims - 1 - d].start ); CV_CheckEQ(range[d].size(), (int)output.size[d], ""); } const size_t param_LIMIT_BLOCK_SIZE_PER_WG = WSZ * 64; int block_dims = 0; size_t block_size = elemSize; for (int i = dims - 1; i >= 0; --i) { if (input.step[i] != output.step[i]) break; block_size *= output.size[i]; block_dims++; if (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG) break; } const size_t total = output.total() * elemSize; size_t num_blocks = total / block_size; if ((num_blocks <= 8 && block_size >= WSZ * 4) || (block_size >= param_LIMIT_BLOCK_SIZE_PER_WG)) { // use 1D copy mode opts += cv::format(" -DUSE_COPY_1D=1"); opts += cv::format(" -DBLOCK_DIMS=%d", block_dims); opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims); opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size); } else { // use 2D copy mode int block_cols = block_size; int block_dims_contiguous = block_dims; size_t input_base_step = input.step[dims - 1 - block_dims_contiguous]; size_t output_base_step = output.step[dims - 1 - block_dims_contiguous]; size_t block_rows = 1; for (int i = dims - 1 - block_dims_contiguous; i >= 0; --i) { if (input.step[i] * output_base_step != output.step[i] * input_base_step) break; block_rows *= output.size[i]; block_dims++; } block_size *= block_rows; num_blocks = total / block_size; if (block_rows > 1) { opts += cv::format(" -DBLOCK_DIMS=%d", block_dims); opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous); opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); opts += cv::format(" -DBLOCK_COLS=%d", (int)block_cols); opts += cv::format(" -DBLOCK_ROWS=%d", (int)block_rows); opts += cv::format(" -DBLOCK_SRC_STRIDE=%d", (int)input_base_step); } else { // use 1D copy mode opts += cv::format(" -DUSE_COPY_1D=1"); opts += cv::format(" -DBLOCK_DIMS=%d", block_dims_contiguous); opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous); opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size); opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size); } } const size_t MIN_WORK_ITEMS = 16; if (block_size <= 4 * MIN_WORK_ITEMS) WSZ = 4; else if (block_size <= 8 * MIN_WORK_ITEMS) WSZ = 8; else if (block_size <= 16 * MIN_WORK_ITEMS) WSZ = 16; else if (block_size <= 32 * MIN_WORK_ITEMS) WSZ = 32; else if (block_size <= 64 * MIN_WORK_ITEMS) WSZ = 64; opts += cv::format(" -DWSZ=%d", (int)WSZ); std::ostringstream kernel_suffix; kernel_suffix << dims << 'x' << elemSize << "_bsz" << block_size; kernel_suffix << "__src_"; for (int d = 0; d < dims; d++) { kernel_suffix << input.size[dims - 1 - d] << '_'; } kernel_suffix << '_'; /*for (int d = 0; d < dims; d++) { kernel_suffix << input.step[dims - 1 - d] << '_'; } kernel_suffix << '_';*/ kernel_suffix << "dst_"; for (int d = 0; d < dims; d++) { kernel_suffix << output.size[dims - 1 - d] << '_'; } /*kernel_suffix << '_'; for (int d = 0; d < dims; d++) { kernel_suffix << output.step[dims - 1 - d] << '_'; }*/ kernel_suffix << "_slice_"; for (int d = 0; d < dims; d++) { kernel_suffix << range[dims - 1 - d].start << '_'; } for (int d = 0; d < dims; d++) { kernel_suffix << '_' << range[dims - 1 - d].end; } std::string kernel_suffix_str = kernel_suffix.str(); opts += cv::format(" -DSLICE_KERNEL_SUFFIX=%s", kernel_suffix_str.c_str()); ocl.kernel_name = cv::format("slice_%s", kernel_suffix_str.c_str()); ocl.build_opts = opts; ocl.local_size[0] = WSZ; ocl.local_size[1] = 1; ocl.global_size[0] = WSZ; ocl.global_size[1] = num_blocks; } // for outputs.size() } // ocl_prepare bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) { CV_TRACE_FUNCTION(); if (hasSteps) return false; // TODO not implemented yet: https://github.com/opencv/opencv/pull/19546 std::vector inputs; std::vector outputs; inputs_.getUMatVector(inputs); outputs_.getUMatVector(outputs); CV_Assert(outputs.size() == finalSliceRanges.size()); const UMat& input = inputs[0]; const int dims = input.dims; if (dims > 5) { CV_LOG_INFO(NULL, "DNN/OpenCL/Slice: implementation doesn't support dims=" << dims << ". Fallback to CPU"); return false; } if (ocl_exec_cache.empty()) { ocl_prepare(inputs, outputs); } CV_CheckEQ(ocl_exec_cache.size(), outputs.size(), ""); for (size_t i = 0; i < outputs.size(); i++) { const OpenCLExecInfo& ocl = ocl_exec_cache[i]; UMat& output = outputs[i]; ocl::Kernel kernel(ocl.kernel_name.c_str(), ocl::dnn::slice_oclsrc, ocl.build_opts); if (kernel.empty()) return false; bool ret = kernel.args( ocl::KernelArg::PtrReadOnly(input), ocl::KernelArg::PtrWriteOnly(output) ) .run_(2, (size_t*)ocl.global_size, (size_t*)ocl.local_size, false); if (!ret) return false; } // for outputs.size() return true; } // forward_ocl #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), forward_ocl(inputs_arr, outputs_arr, internals_arr)) std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); const Mat& inpMat = inputs[0]; CV_Assert(outputs.size() == finalSliceRanges.size()); if (!hasSteps) { for (size_t i = 0; i < outputs.size(); i++) { inpMat(finalSliceRanges[i]).copyTo(outputs[i]); } } else { int dimsNum = inpMat.dims; for (size_t i = 0; i < outputs.size(); i++) { std::vector inpIdx(dimsNum, 0); std::vector outIdx(dimsNum, 0); if (inpMat.type() == CV_16S) getSliceRecursive(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx); else if (inpMat.type() == CV_8S) getSliceRecursive(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx); else getSliceRecursive(inpMat, inpIdx, finalSliceRanges[i], sliceSteps[i], 0, dimsNum, outputs[i], outIdx); // flip for negative steps flip(outputs[i]); } } } #ifdef HAVE_CANN virtual Ptr initCann(const std::vector > &inputs, const std::vector > &outputs, const std::vector >& nodes) CV_OVERRIDE { bool isSplit = sliceRanges.size() > 1; auto x = inputs[0].dynamicCast(); if (isSplit) { // create operator auto op = std::make_shared(name); // set attr int n_split = static_cast(sliceRanges[0].size()); op->set_attr_num_split(n_split); // set inputs // set inputs : x auto op_x = nodes[0].dynamicCast()->getOp(); op->set_input_x_by_name(*op_x, x->name.c_str()); auto desc_x = x->getTensorDesc(); op->update_input_desc_x(*desc_x); // set inputs : size_splits std::vector size_splits(n_split); int cnt_split = 0; for (size_t i = 0; i < sliceRanges.size() - 1; ++i) { auto target_range = sliceRanges[i].back(); size_splits[i] = target_range.end - target_range.start; cnt_split += size_splits[i]; } auto shape_x = desc_x->GetShape().GetDims(); CV_CheckGT(shape_x[axis], cnt_split, "DNN/CANN: invalid splits"); size_splits[n_split - 1] = shape_x[axis] - cnt_split; std::vector shape_size_splits{(int)size_splits.size()}; Mat size_splits_mat(shape_size_splits, CV_32S, size_splits.data()); auto op_const_size_splits = std::make_shared(size_splits_mat.data, size_splits_mat.type(), shape_size_splits, cv::format("%s_size_splits", name.c_str())); op->set_input_size_splits(*(op_const_size_splits->getOp())); op->update_input_desc_size_splits(*(op_const_size_splits->getTensorDesc())); // set inputs : split_dim Mat split_dim_mat(1, 1, CV_32S, Scalar(axis)); std::vector split_dim_shape{1}; auto op_const_split_dim = std::make_shared(split_dim_mat.data, split_dim_mat.type(), split_dim_shape, cv::format("%s_split_dim", name.c_str())); op->set_input_split_dim(*(op_const_split_dim->getOp())); op->update_input_desc_split_dim(*(op_const_split_dim->getTensorDesc())); // set outputs op->create_dynamic_output_y(n_split); for (uint32_t i = 0; i < n_split; ++i) { auto desc_output_y_i = std::make_shared(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); op->update_dynamic_output_desc_y(i, *desc_output_y_i); } return Ptr(new CannBackendNode(op)); } // ONNX-Slice CV_CheckEQ(sliceRanges.size(), (size_t)1, ""); if (hasSteps) { CV_CheckEQ(sliceSteps.size(), (size_t)1, "DNN/CANN/Slice: no support to multiple slices"); CV_CheckEQ(sliceRanges[0].size(), sliceSteps[0].size(), "DNN/CANN/Slice: number of slice ranges does not match number of slice steps"); } const int dims = x->host->dims; // create operator auto op = std::make_shared(name); // retrieve begins, ends, axes and steps std::vector begins, ends, axes, steps; for (int i = 0; i < sliceRanges[0].size(); i++) { begins.push_back(sliceRanges[0][i].start); ends.push_back(sliceRanges[0][i].end); axes.push_back(i); if (hasSteps) steps.push_back(sliceSteps[0][i]); else steps.push_back(1); // put 1 by default } std::vector shape_{dims}; // set inputs // set inputs : x auto op_x = nodes[0].dynamicCast()->getOp(); op->set_input_x_by_name(*op_x, x->name.c_str()); auto x_desc = x->getTensorDesc(); op->update_input_desc_x(*x_desc); // set inputs : begin Mat begin_mat(shape_, CV_32S, &begins[0]); auto op_const_begin = std::make_shared(begin_mat.data, begin_mat.type(), shape_, cv::format("%s_begin", name.c_str())); op->set_input_begin(*(op_const_begin->getOp())); op->update_input_desc_begin(*(op_const_begin->getTensorDesc())); // set inputs : end Mat end_mat(shape_, CV_32S, &ends[0]); auto op_const_end = std::make_shared(end_mat.data, end_mat.type(), shape_, cv::format("%s_end", name.c_str())); op->set_input_end(*(op_const_end->getOp())); op->update_input_desc_end(*(op_const_end->getTensorDesc())); // set inputs : axes Mat axes_mat(shape_, CV_32S, &axes[0]); auto op_const_axes = std::make_shared(axes_mat.data, axes_mat.type(), shape_, cv::format("%s_axes", name.c_str())); op->set_input_axes(*(op_const_axes->getOp())); op->update_input_desc_axes(*(op_const_axes->getTensorDesc())); // set inputs : strides Mat strides_mat(shape_, CV_32S, &steps[0]); auto op_const_strides = std::make_shared(strides_mat.data, strides_mat.type(), shape_, cv::format("%s_strides", name.c_str())); op->set_input_strides(*(op_const_strides->getOp())); op->update_input_desc_strides(*(op_const_strides->getTensorDesc())); // set outputs auto output_desc = std::make_shared(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); op->update_output_desc_y(*output_desc); return Ptr(new CannBackendNode(op)); } #endif #ifdef HAVE_DNN_NGRAPH virtual Ptr initNgraph(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE { CV_Assert_N(nodes.size() <= 2); auto& ieInpNode = nodes[0].dynamicCast()->node; CV_Assert(finalSliceRanges[0].size() == ieInpNode.get_shape().size()); std::vector offsets, dims; for (int i = 0; i < finalSliceRanges[0].size(); ++i) { offsets.push_back(finalSliceRanges[0][i].start); dims.push_back(finalSliceRanges[0][i].end); } auto lower_bounds = std::make_shared(ngraph::element::i64, ngraph::Shape{offsets.size()}, offsets.data()); auto upper_bounds = std::make_shared(ngraph::element::i64, ngraph::Shape{dims.size()}, dims.data()); auto strides = std::make_shared(ngraph::element::i64, ngraph::Shape{dims.size()}, std::vector((int64_t)dims.size(), 1)); auto slice = std::make_shared(ieInpNode, lower_bounds, upper_bounds, strides, std::vector{}, std::vector{}); return Ptr(new InfEngineNgraphNode(slice)); } #endif // HAVE_DNN_NGRAPH #ifdef HAVE_CUDA Ptr initCUDA( void *context_, const std::vector>& inputs, const std::vector>& outputs ) override { auto context = reinterpret_cast(context_); std::vector> offsets; for (const auto& ranges : finalSliceRanges) { std::vector offsets_i; for (const auto& range : ranges) offsets_i.push_back(range.start); offsets.push_back(std::move(offsets_i)); } return make_cuda_node(preferableTarget, std::move(context->stream), std::move(offsets)); } #endif virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE { const int numOutputs = scales[1].size(); for (int i = 0; i < numOutputs; i++) { if (scales[1][i] != scales[0][0]) return false; } return true; } private: template void getSliceRecursive(const Mat &inpMat, std::vector &inpIdx, const std::vector &sliceRanges, const std::vector &sliceSteps, int dim, int dimsNum, Mat &outputs, std::vector &outIdx) { int begin = sliceRanges[dim].start; int end = sliceRanges[dim].end; int step = !sliceSteps.empty() ? sliceSteps[dim] : 1; // TODO optimization is required (for 2D tail case at least) for (int k = begin, j = 0; k < end; k += step, j++) { inpIdx[dim] = k; outIdx[dim] = j; if (dim + 1 < dimsNum) getSliceRecursive(inpMat, inpIdx, sliceRanges, sliceSteps, dim + 1, dimsNum, outputs, outIdx); else outputs.at(outIdx.data()) = inpMat.at(inpIdx.data()); } } void flip(Mat& output) // break if 1d tensor? { for (int i = 0; i < neg_step_dims.size(); ++i) cv::flipND(output, output, neg_step_dims[i]); } protected: // The actual non-negative values determined from @p sliceRanges depends on input size. std::vector > finalSliceRanges; std::vector neg_step_dims; bool hasDynamicShapes; bool shapesInitialized; bool hasSteps; }; class CropLayerImpl CV_FINAL : public SliceLayerImpl { public: CropLayerImpl(const LayerParams& params) : SliceLayerImpl(LayerParams()) { setParamsFrom(params); axis = params.get("axis", 2); const DictValue *paramOffset = params.ptr("offset"); if (paramOffset) { for (int i = 0; i < paramOffset->size(); i++) offset.push_back(paramOffset->get(i)); } } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(inputs.size() == 2); MatShape dstShape = inputs[0]; int start = normalize_axis(axis, dstShape); for (int i = start; i < dstShape.size(); i++) { dstShape[i] = inputs[1][i]; } outputs.resize(1, dstShape); return false; } void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE { std::vector inputs; inputs_arr.getMatVector(inputs); CV_Assert(2 == inputs.size()); const Mat &inpBlob = inputs[0]; const Mat &inpSzBlob = inputs[1]; int dims = inpBlob.dims; int start_axis = normalize_axis(axis, dims); std::vector offset_final(dims, 0); if (offset.size() == 1) { for (int i = start_axis; i < dims; i++) offset_final[i] = offset[0]; } else if (offset.size() > 1) { if ((int)offset.size() != dims - start_axis) CV_Error(Error::StsBadArg, "number of offset values specified must be " "equal to the number of dimensions following axis."); for (int i = start_axis; i < dims; i++) offset_final[i] = offset[i - start_axis]; } finalSliceRanges.resize(1); finalSliceRanges[0].resize(dims); for (int i = 0; i < start_axis; i++) { finalSliceRanges[0][i] = Range(0, inpBlob.size[i]); } for (int i = start_axis; i < dims; i++) { if (offset_final[i] < 0 || offset_final[i] + inpSzBlob.size[i] > inpBlob.size[i]) CV_Error(Error::StsBadArg, "invalid crop parameters or blob sizes"); finalSliceRanges[0][i] = Range(offset_final[i], offset_final[i] + inpSzBlob.size[i]); } } private: std::vector offset; }; Ptr SliceLayer::create(const LayerParams& params) { return Ptr(new SliceLayerImpl(params)); } Ptr CropLayer::create(const LayerParams& params) { return Ptr(new CropLayerImpl(params)); } } }