/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "npy_blob.hpp" #include #include // CV_DNN_REGISTER_LAYER_CLASS namespace opencv_test { using namespace std; using namespace testing; using namespace cv; using namespace cv::dnn; template static std::string _tf(TStr filename, bool inTorchDir = true) { String path = "dnn/"; if (inTorchDir) path += "torch/"; path += filename; return findDataFile(path, false); } TEST(Torch_Importer, simple_read) { Net net; ASSERT_NO_THROW(net = readNetFromTorch(_tf("net_simple_net.txt"), false)); ASSERT_FALSE(net.empty()); } class Test_Torch_layers : public DNNTestLayer { public: void runTorchNet(const String& prefix, String outLayerName = "", bool check2ndBlob = false, bool isBinary = false, bool evaluate = true, double l1 = 0.0, double lInf = 0.0) { String suffix = (isBinary) ? ".dat" : ".txt"; Mat inp, outRef; ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) ); ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) ); checkBackend(backend, target, &inp, &outRef); Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary, evaluate); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (outLayerName.empty()) outLayerName = net.getLayerNames().back(); net.setInput(inp); std::vector outBlobs; net.forward(outBlobs, outLayerName); l1 = l1 ? l1 : default_l1; lInf = lInf ? lInf : default_lInf; normAssert(outRef, outBlobs[0], "", l1, lInf); if (check2ndBlob && backend != DNN_BACKEND_INFERENCE_ENGINE) { Mat out2 = outBlobs[1]; Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary); normAssert(out2, ref2, "", l1, lInf); } } }; TEST_P(Test_Torch_layers, run_convolution) { // Output reference values are in range [23.4018, 72.0181] double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.08 : default_l1; double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.42 : default_lInf; runTorchNet("net_conv", "", false, true, true, l1, lInf); } TEST_P(Test_Torch_layers, run_pool_max) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) throw SkipTestException(""); runTorchNet("net_pool_max", "", true); } TEST_P(Test_Torch_layers, run_pool_ave) { runTorchNet("net_pool_ave"); } TEST_P(Test_Torch_layers, run_reshape_change_batch_size) { runTorchNet("net_reshape"); } TEST_P(Test_Torch_layers, run_reshape) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE >= 2018040000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException("Test is disabled for OpenVINO 2018R4"); #endif runTorchNet("net_reshape_batch"); runTorchNet("net_reshape_channels", "", false, true); } TEST_P(Test_Torch_layers, run_reshape_single_sample) { // Reference output values in range [14.4586, 18.4492]. runTorchNet("net_reshape_single_sample", "", false, false, true, (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.033 : default_l1, (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.05 : default_lInf); } TEST_P(Test_Torch_layers, run_linear) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) throw SkipTestException(""); runTorchNet("net_linear_2d"); } TEST_P(Test_Torch_layers, run_concat) { runTorchNet("net_concat", "l5_torchMerge"); } TEST_P(Test_Torch_layers, run_depth_concat) { runTorchNet("net_depth_concat", "", false, true, true, 0.0, target == DNN_TARGET_OPENCL_FP16 ? 0.021 : 0.0); } TEST_P(Test_Torch_layers, run_deconv) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE >= 2018040000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException("Test is disabled for OpenVINO 2018R4"); #endif runTorchNet("net_deconv"); } TEST_P(Test_Torch_layers, run_batch_norm) { runTorchNet("net_batch_norm", "", false, true); runTorchNet("net_batch_norm_train", "", false, true, false); } TEST_P(Test_Torch_layers, net_prelu) { runTorchNet("net_prelu"); } TEST_P(Test_Torch_layers, net_cadd_table) { runTorchNet("net_cadd_table"); } TEST_P(Test_Torch_layers, net_softmax) { runTorchNet("net_softmax"); runTorchNet("net_softmax_spatial"); } TEST_P(Test_Torch_layers, net_logsoftmax) { runTorchNet("net_logsoftmax"); runTorchNet("net_logsoftmax_spatial"); } TEST_P(Test_Torch_layers, net_lp_pooling) { runTorchNet("net_lp_pooling_square", "", false, true); runTorchNet("net_lp_pooling_power", "", false, true); } TEST_P(Test_Torch_layers, net_conv_gemm_lrn) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException(""); runTorchNet("net_conv_gemm_lrn", "", false, true, true, target == DNN_TARGET_OPENCL_FP16 ? 0.046 : 0.0, target == DNN_TARGET_OPENCL_FP16 ? 0.023 : 0.0); } TEST_P(Test_Torch_layers, net_inception_block) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE == 2018030000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException(""); #endif runTorchNet("net_inception_block", "", false, true); } TEST_P(Test_Torch_layers, net_normalize) { runTorchNet("net_normalize", "", false, true); } TEST_P(Test_Torch_layers, net_padding) { runTorchNet("net_padding", "", false, true); runTorchNet("net_spatial_zero_padding", "", false, true); runTorchNet("net_spatial_reflection_padding", "", false, true); } TEST_P(Test_Torch_layers, net_non_spatial) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) throw SkipTestException(""); runTorchNet("net_non_spatial", "", false, true); } TEST_P(Test_Torch_layers, run_paralel) { if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU) throw SkipTestException(""); runTorchNet("net_parallel", "l5_torchMerge"); } TEST_P(Test_Torch_layers, net_residual) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE == 2018050000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) throw SkipTestException("Test is disabled for OpenVINO 2018R5"); #endif runTorchNet("net_residual", "", false, true); } class Test_Torch_nets : public DNNTestLayer {}; TEST_P(Test_Torch_nets, OpenFace_accuracy) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException("Test is disabled for Myriad targets"); #endif checkBackend(); const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false); Net net = readNetFromTorch(model); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat sample = imread(findDataFile("cv/shared/lena.png", false)); Mat sampleF32(sample.size(), CV_32FC3); sample.convertTo(sampleF32, sampleF32.type()); sampleF32 /= 255; resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST); Mat inputBlob = blobFromImage(sampleF32, 1.0, Size(), Scalar(), /*swapRB*/true); net.setInput(inputBlob); Mat out = net.forward(); // Reference output values are in range [-0.17212, 0.263492] // on Myriad problem layer: l4_Pooling - does not use pads_begin float l1 = (target == DNN_TARGET_OPENCL_FP16) ? 4e-4 : 1e-5; float lInf = (target == DNN_TARGET_OPENCL_FP16) ? 1.5e-3 : 1e-3; Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true); normAssert(out, outRef, "", l1, lInf); } static Mat getSegmMask(const Mat& scores) { const int rows = scores.size[2]; const int cols = scores.size[3]; const int numClasses = scores.size[1]; Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); Mat maxVal(rows, cols, CV_32FC1, Scalar(0)); for (int ch = 0; ch < numClasses; ch++) { for (int row = 0; row < rows; row++) { const float *ptrScore = scores.ptr(0, ch, row); uint8_t *ptrMaxCl = maxCl.ptr(row); float *ptrMaxVal = maxVal.ptr(row); for (int col = 0; col < cols; col++) { if (ptrScore[col] > ptrMaxVal[col]) { ptrMaxVal[col] = ptrScore[col]; ptrMaxCl[col] = (uchar)ch; } } } } return maxCl; } // Computer per-class intersection over union metric. static void normAssertSegmentation(const Mat& ref, const Mat& test) { CV_Assert_N(ref.dims == 4, test.dims == 4); const int numClasses = ref.size[1]; CV_Assert(numClasses == test.size[1]); Mat refMask = getSegmMask(ref); Mat testMask = getSegmMask(test); EXPECT_EQ(countNonZero(refMask != testMask), 0); } TEST_P(Test_Torch_nets, ENet_accuracy) { applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB); checkBackend(); if (backend == DNN_BACKEND_INFERENCE_ENGINE || (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) throw SkipTestException(""); Net net; { const string model = findDataFile("dnn/Enet-model-best.net", false); net = readNetFromTorch(model, true); ASSERT_TRUE(!net.empty()); } net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat sample = imread(_tf("street.png", false)); Mat inputBlob = blobFromImage(sample, 1./255, Size(), Scalar(), /*swapRB*/true); net.setInput(inputBlob, ""); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false)); // Due to numerical instability in Pooling-Unpooling layers (indexes jittering) // thresholds for ENet must be changed. Accuracy of results was checked on // Cityscapes dataset and difference in mIOU with Torch is 10E-4% normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552); normAssertSegmentation(ref, out); const int N = 3; for (int i = 0; i < N; i++) { net.setInput(inputBlob, ""); Mat out = net.forward(); normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552); normAssertSegmentation(ref, out); } } // Check accuracy of style transfer models from https://github.com/jcjohnson/fast-neural-style // th fast_neural_style.lua \ // -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \ // -output_image lena.png \ // -median_filter 0 \ // -image_size 0 \ // -model models/eccv16/starry_night.t7 // th fast_neural_style.lua \ // -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \ // -output_image lena.png \ // -median_filter 0 \ // -image_size 0 \ // -model models/instance_norm/feathers.t7 TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target"); #endif checkBackend(); #if defined(INF_ENGINE_RELEASE) #if INF_ENGINE_RELEASE <= 2018050000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) throw SkipTestException(""); #endif #endif std::string models[] = {"dnn/fast_neural_style_eccv16_starry_night.t7", "dnn/fast_neural_style_instance_norm_feathers.t7"}; std::string targets[] = {"dnn/lena_starry_night.png", "dnn/lena_feathers.png"}; for (int i = 0; i < 2; ++i) { const string model = findDataFile(models[i], false); Net net = readNetFromTorch(model); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat img = imread(findDataFile("dnn/googlenet_1.png", false)); Mat inputBlob = blobFromImage(img, 1.0, Size(), Scalar(103.939, 116.779, 123.68), false); net.setInput(inputBlob); Mat out = net.forward(); // Deprocessing. getPlane(out, 0, 0) += 103.939; getPlane(out, 0, 1) += 116.779; getPlane(out, 0, 2) += 123.68; out = cv::min(cv::max(0, out), 255); Mat ref = imread(findDataFile(targets[i])); Mat refBlob = blobFromImage(ref, 1.0, Size(), Scalar(), false); if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) { double normL1 = cvtest::norm(refBlob, out, cv::NORM_L1) / refBlob.total(); if (target == DNN_TARGET_MYRIAD) EXPECT_LE(normL1, 4.0f); else EXPECT_LE(normL1, 0.6f); } else normAssert(out, refBlob, "", 0.5, 1.1); } } INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_nets, dnnBackendsAndTargets()); // Test a custom layer // https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialUpSamplingNearest class SpatialUpSamplingNearestLayer CV_FINAL : public Layer { public: SpatialUpSamplingNearestLayer(const LayerParams ¶ms) : Layer(params) { scale = params.get("scale_factor"); } static Ptr create(LayerParams& params) { return Ptr(new SpatialUpSamplingNearestLayer(params)); } virtual bool getMemoryShapes(const std::vector > &inputs, const int requiredOutputs, std::vector > &outputs, std::vector > &internals) const CV_OVERRIDE { std::vector outShape(4); outShape[0] = inputs[0][0]; // batch size outShape[1] = inputs[0][1]; // number of channels outShape[2] = scale * inputs[0][2]; outShape[3] = scale * inputs[0][3]; outputs.assign(1, outShape); return false; } void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); Mat& inp = inputs[0]; Mat& out = outputs[0]; const int outHeight = out.size[2]; const int outWidth = out.size[3]; for (size_t n = 0; n < inp.size[0]; ++n) { for (size_t ch = 0; ch < inp.size[1]; ++ch) { resize(getPlane(inp, n, ch), getPlane(out, n, ch), Size(outWidth, outHeight), 0, 0, INTER_NEAREST); } } } private: int scale; }; TEST_P(Test_Torch_layers, upsampling_nearest) { // Test a custom layer. CV_DNN_REGISTER_LAYER_CLASS(SpatialUpSamplingNearest, SpatialUpSamplingNearestLayer); try { runTorchNet("net_spatial_upsampling_nearest", "", false, true); } catch (...) { LayerFactory::unregisterLayer("SpatialUpSamplingNearest"); throw; } LayerFactory::unregisterLayer("SpatialUpSamplingNearest"); // Test an implemented layer. runTorchNet("net_spatial_upsampling_nearest", "", false, true); } INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_layers, dnnBackendsAndTargets()); }