#!/usr/bin/env python ''' example to detect upright people in images using HOG features ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv def inside(r, q): rx, ry, rw, rh = r qx, qy, qw, qh = q return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh from tests_common import NewOpenCVTests, intersectionRate class peopledetect_test(NewOpenCVTests): def test_peopledetect(self): hog = cv.HOGDescriptor() hog.setSVMDetector( cv.HOGDescriptor_getDefaultPeopleDetector() ) dirPath = 'samples/data/' samples = ['basketball1.png', 'basketball2.png'] testPeople = [ [[23, 76, 164, 477], [440, 22, 637, 478]], [[23, 76, 164, 477], [440, 22, 637, 478]] ] eps = 0.5 for sample in samples: img = self.get_sample(dirPath + sample, 0) found, _w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05) found_filtered = [] for ri, r in enumerate(found): for qi, q in enumerate(found): if ri != qi and inside(r, q): break else: found_filtered.append(r) matches = 0 for i in range(len(found_filtered)): for j in range(len(testPeople)): found_rect = (found_filtered[i][0], found_filtered[i][1], found_filtered[i][0] + found_filtered[i][2], found_filtered[i][1] + found_filtered[i][3]) if intersectionRate(found_rect, testPeople[j][0]) > eps or intersectionRate(found_rect, testPeople[j][1]) > eps: matches += 1 self.assertGreater(matches, 0) if __name__ == '__main__': NewOpenCVTests.bootstrap()