#include #include #include #include #include "matchers.hpp" #include "util.hpp" using namespace std; using namespace cv; using namespace cv::gpu; ////////////////////////////////////////////////////////////////////////////// namespace { class CpuSurfFeaturesFinder : public FeaturesFinder { public: inline CpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, int num_octaves_descr, int num_layers_descr) { detector_ = new SurfFeatureDetector(hess_thresh, num_octaves, num_layers); extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr); } protected: void find(const vector &images, vector &features); private: Ptr detector_; Ptr extractor_; }; void CpuSurfFeaturesFinder::find(const vector &images, vector &features) { // Make images gray vector gray_images(images.size()); for (size_t i = 0; i < images.size(); ++i) { CV_Assert(images[i].depth() == CV_8U); cvtColor(images[i], gray_images[i], CV_BGR2GRAY); } features.resize(images.size()); // Find keypoints in all images for (size_t i = 0; i < images.size(); ++i) { detector_->detect(gray_images[i], features[i].keypoints); extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors); } } class GpuSurfFeaturesFinder : public FeaturesFinder { public: inline GpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, int num_octaves_descr, int num_layers_descr) { surf_.hessianThreshold = hess_thresh; surf_.extended = false; num_octaves_ = num_octaves; num_layers_ = num_layers; num_octaves_descr_ = num_octaves_descr; num_layers_descr_ = num_layers_descr; } protected: void find(const vector &images, vector &features); private: SURF_GPU surf_; int num_octaves_, num_layers_; int num_octaves_descr_, num_layers_descr_; }; void GpuSurfFeaturesFinder::find(const vector &images, vector &features) { // Make images gray vector gray_images(images.size()); for (size_t i = 0; i < images.size(); ++i) { CV_Assert(images[i].depth() == CV_8U); cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY); } features.resize(images.size()); // Find keypoints in all images GpuMat d_keypoints; GpuMat d_descriptors; for (size_t i = 0; i < images.size(); ++i) { surf_.nOctaves = num_octaves_; surf_.nOctaveLayers = num_layers_; surf_(gray_images[i], GpuMat(), d_keypoints); surf_.nOctaves = num_octaves_descr_; surf_.nOctaveLayers = num_layers_descr_; surf_(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true); surf_.downloadKeypoints(d_keypoints, features[i].keypoints); d_descriptors.download(features[i].descriptors); } } } SurfFeaturesFinder::SurfFeaturesFinder(bool gpu_hint, double hess_thresh, int num_octaves, int num_layers, int num_octaves_descr, int num_layers_descr) { if (gpu_hint && getCudaEnabledDeviceCount() > 0) impl_ = new GpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); else impl_ = new CpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); } void SurfFeaturesFinder::find(const vector &images, vector &features) { (*impl_)(images, features); } ////////////////////////////////////////////////////////////////////////////// MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {} MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; } const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other) { src_img_idx = other.src_img_idx; dst_img_idx = other.dst_img_idx; matches = other.matches; num_inliers = other.num_inliers; H = other.H.clone(); return *this; } ////////////////////////////////////////////////////////////////////////////// void FeaturesMatcher::operator ()(const vector &images, const vector &features, vector &pairwise_matches) { pairwise_matches.resize(images.size() * images.size()); for (size_t i = 0; i < images.size(); ++i) { LOGLN("Processing image " << i << "... "); for (size_t j = 0; j < images.size(); ++j) { if (i == j) continue; size_t pair_idx = i * images.size() + j; (*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]); pairwise_matches[pair_idx].src_img_idx = i; pairwise_matches[pair_idx].dst_img_idx = j; } } } ////////////////////////////////////////////////////////////////////////////// namespace { class CpuMatcher : public FeaturesMatcher { public: inline CpuMatcher(float match_conf) : match_conf_(match_conf) {} void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); private: float match_conf_; }; void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) { matches_info.matches.clear(); BruteForceMatcher< L2 > matcher; vector< vector > pair_matches; // Find 1->2 matches matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(m0); } // Find 2->1 matches pair_matches.clear(); matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } } class GpuMatcher : public FeaturesMatcher { public: inline GpuMatcher(float match_conf) : match_conf_(match_conf) {} void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); private: float match_conf_; GpuMat descriptors1_; GpuMat descriptors2_; GpuMat trainIdx_, distance_, allDist_; }; void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) { matches_info.matches.clear(); BruteForceMatcher_GPU< L2 > matcher; descriptors1_.upload(features1.descriptors); descriptors2_.upload(features2.descriptors); vector< vector > pair_matches; // Find 1->2 matches matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2); matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; CV_Assert(m0.queryIdx < static_cast(features1.keypoints.size())); CV_Assert(m0.trainIdx < static_cast(features2.keypoints.size())); if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(m0); } // Find 2->1 matches pair_matches.clear(); matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2); matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; CV_Assert(m0.trainIdx < static_cast(features1.keypoints.size())); CV_Assert(m0.queryIdx < static_cast(features2.keypoints.size())); if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } } } BestOf2NearestMatcher::BestOf2NearestMatcher(bool gpu_hint, float match_conf, int num_matches_thresh1, int num_matches_thresh2) { if (gpu_hint && getCudaEnabledDeviceCount() > 0) impl_ = new GpuMatcher(match_conf); else impl_ = new CpuMatcher(match_conf); num_matches_thresh1_ = num_matches_thresh1; num_matches_thresh2_ = num_matches_thresh2; } void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2, MatchesInfo &matches_info) { (*impl_)(img1, features1, img2, features2, matches_info); // Check if it makes sense to find homography if (matches_info.matches.size() < static_cast(num_matches_thresh1_)) return; // Construct point-point correspondences for homography estimation Mat src_points(1, matches_info.matches.size(), CV_32FC2); Mat dst_points(1, matches_info.matches.size(), CV_32FC2); for (size_t i = 0; i < matches_info.matches.size(); ++i) { const DMatch& m = matches_info.matches[i]; Point2f p = features1.keypoints[m.queryIdx].pt; p.x -= img1.cols * 0.5f; p.y -= img1.rows * 0.5f; src_points.at(0, i) = p; p = features2.keypoints[m.trainIdx].pt; p.x -= img2.cols * 0.5f; p.y -= img2.rows * 0.5f; dst_points.at(0, i) = p; } // Find pair-wise motion matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC); // Find number of inliers matches_info.num_inliers = 0; for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i) if (matches_info.inliers_mask[i]) matches_info.num_inliers++; // Check if we should try to refine motion if (matches_info.num_inliers < num_matches_thresh2_) return; // Construct point-point correspondences for inliers only src_points.create(1, matches_info.num_inliers, CV_32FC2); dst_points.create(1, matches_info.num_inliers, CV_32FC2); int inlier_idx = 0; for (size_t i = 0; i < matches_info.matches.size(); ++i) { if (!matches_info.inliers_mask[i]) continue; const DMatch& m = matches_info.matches[i]; Point2f p = features1.keypoints[m.queryIdx].pt; p.x -= img1.cols * 0.5f; p.y -= img2.rows * 0.5f; src_points.at(0, inlier_idx) = p; p = features2.keypoints[m.trainIdx].pt; p.x -= img2.cols * 0.5f; p.y -= img2.rows * 0.5f; dst_points.at(0, inlier_idx) = p; inlier_idx++; } // Rerun motion estimation on inliers only matches_info.H = findHomography(src_points, dst_points, CV_RANSAC); }