/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include "test_chessboardgenerator.hpp" using namespace cv; class CV_ChessboardSubpixelTest : public cvtest::BaseTest { public: CV_ChessboardSubpixelTest(); protected: Mat intrinsic_matrix_; Mat distortion_coeffs_; Size image_size_; void run(int); void generateIntrinsicParams(); }; int calcDistance(const vector& set1, const vector& set2, double& mean_dist) { if(set1.size() != set2.size()) { return 0; } std::vector indices; double sum_dist = 0.0; for(size_t i = 0; i < set1.size(); i++) { double min_dist = std::numeric_limits::max(); int min_idx = -1; for(int j = 0; j < (int)set2.size(); j++) { double dist = norm(set1[i] - set2[j]); if(dist < min_dist) { min_idx = j; min_dist = dist; } } // check validity of min_idx if(min_idx == -1) { return 0; } std::vector::iterator it = std::find(indices.begin(), indices.end(), min_idx); if(it != indices.end()) { // there are two points in set1 corresponding to the same point in set2 return 0; } indices.push_back(min_idx); // printf("dist %d = %f\n", (int)i, min_dist); sum_dist += min_dist*min_dist; } mean_dist = sqrt(sum_dist/set1.size()); // printf("sum_dist = %f, set1.size() = %d, mean_dist = %f\n", sum_dist, (int)set1.size(), mean_dist); return 1; } CV_ChessboardSubpixelTest::CV_ChessboardSubpixelTest() : intrinsic_matrix_(Size(3, 3), CV_64FC1), distortion_coeffs_(Size(1, 4), CV_64FC1), image_size_(640, 480) { } /* ///////////////////// chess_corner_test ///////////////////////// */ void CV_ChessboardSubpixelTest::run( int ) { int code = cvtest::TS::OK; int progress = 0; RNG& rng = ts->get_rng(); const int runs_count = 20; const int max_pattern_size = 8; const int min_pattern_size = 5; Mat bg(image_size_, CV_8UC1); bg = Scalar(0); double sum_dist = 0.0; int count = 0; for(int i = 0; i < runs_count; i++) { const int pattern_width = min_pattern_size + cvtest::randInt(rng) % (max_pattern_size - min_pattern_size); const int pattern_height = min_pattern_size + cvtest::randInt(rng) % (max_pattern_size - min_pattern_size); Size pattern_size; if(pattern_width > pattern_height) { pattern_size = Size(pattern_height, pattern_width); } else { pattern_size = Size(pattern_width, pattern_height); } ChessBoardGenerator gen_chessboard(Size(pattern_size.width + 1, pattern_size.height + 1)); // generates intrinsic camera and distortion matrices generateIntrinsicParams(); vector corners; Mat chessboard_image = gen_chessboard(bg, intrinsic_matrix_, distortion_coeffs_, corners); vector test_corners; bool result = findChessboardCorners(chessboard_image, pattern_size, test_corners, 15); if(!result) { #if 0 ts->printf(cvtest::TS::LOG, "Warning: chessboard was not detected! Writing image to test.jpg\n"); ts->printf(cvtest::TS::LOG, "Size = %d, %d\n", pattern_size.width, pattern_size.height); ts->printf(cvtest::TS::LOG, "Intrinsic params: fx = %f, fy = %f, cx = %f, cy = %f\n", intrinsic_matrix_.at(0, 0), intrinsic_matrix_.at(1, 1), intrinsic_matrix_.at(0, 2), intrinsic_matrix_.at(1, 2)); ts->printf(cvtest::TS::LOG, "Distortion matrix: %f, %f, %f, %f, %f\n", distortion_coeffs_.at(0, 0), distortion_coeffs_.at(0, 1), distortion_coeffs_.at(0, 2), distortion_coeffs_.at(0, 3), distortion_coeffs_.at(0, 4)); imwrite("test.jpg", chessboard_image); #endif continue; } double dist1 = 0.0; int ret = calcDistance(corners, test_corners, dist1); if(ret == 0) { ts->printf(cvtest::TS::LOG, "findChessboardCorners returns invalid corner coordinates!\n"); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } IplImage chessboard_image_header = chessboard_image; cvFindCornerSubPix(&chessboard_image_header, (CvPoint2D32f*)&test_corners[0], (int)test_corners.size(), cvSize(3, 3), cvSize(1, 1), cvTermCriteria(CV_TERMCRIT_EPS|CV_TERMCRIT_ITER,300,0.1)); find4QuadCornerSubpix(chessboard_image, test_corners, Size(5, 5)); double dist2 = 0.0; ret = calcDistance(corners, test_corners, dist2); if(ret == 0) { ts->printf(cvtest::TS::LOG, "findCornerSubpix returns invalid corner coordinates!\n"); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } ts->printf(cvtest::TS::LOG, "Error after findChessboardCorners: %f, after findCornerSubPix: %f\n", dist1, dist2); sum_dist += dist2; count++; const double max_reduce_factor = 0.8; if(dist1 < dist2*max_reduce_factor) { ts->printf(cvtest::TS::LOG, "findCornerSubPix increases average error!\n"); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } progress = update_progress( progress, i-1, runs_count, 0 ); } sum_dist /= count; ts->printf(cvtest::TS::LOG, "Average error after findCornerSubpix: %f\n", sum_dist); if( code < 0 ) ts->set_failed_test_info( code ); } void CV_ChessboardSubpixelTest::generateIntrinsicParams() { RNG& rng = ts->get_rng(); const double max_focus_length = 1000.0; const double max_focus_diff = 5.0; double fx = cvtest::randReal(rng)*max_focus_length; double fy = fx + cvtest::randReal(rng)*max_focus_diff; double cx = image_size_.width/2; double cy = image_size_.height/2; double k1 = 0.5*cvtest::randReal(rng); double k2 = 0.05*cvtest::randReal(rng); double p1 = 0.05*cvtest::randReal(rng); double p2 = 0.05*cvtest::randReal(rng); double k3 = 0.0; intrinsic_matrix_ = (Mat_(3, 3) << fx, 0.0, cx, 0.0, fy, cy, 0.0, 0.0, 1.0); distortion_coeffs_ = (Mat_(1, 5) << k1, k2, p1, p2, k3); } TEST(Calib3d_ChessboardSubPixDetector, accuracy) { CV_ChessboardSubpixelTest test; test.safe_run(); } /* End of file. */