/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace cv::cuda; using namespace cv::cudev; using namespace cvtest; TEST(Sum, GpuMat) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = sum_(d_src); float res; dst.download(_OutputArray(&res, 1)); Scalar dst_gold = cv::sum(src); ASSERT_FLOAT_EQ(static_cast(dst_gold[0]), res); } TEST(Sum, Expr) { const Size size = randomSize(100, 400); Mat src1 = randomMat(size, CV_32FC1, 0, 1); Mat src2 = randomMat(size, CV_32FC1, 0, 1); GpuMat_ d_src1(src1), d_src2(src2); GpuMat_ dst = sum_(abs_(d_src1 - d_src2)); float res; dst.download(_OutputArray(&res, 1)); Scalar dst_gold = cv::norm(src1, src2, NORM_L1); ASSERT_FLOAT_EQ(static_cast(dst_gold[0]), res); } TEST(MinVal, GpuMat) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = minVal_(d_src); float res; dst.download(_OutputArray(&res, 1)); double res_gold; cv::minMaxLoc(src, &res_gold, 0); ASSERT_FLOAT_EQ(static_cast(res_gold), res); } TEST(MaxVal, Expr) { const Size size = randomSize(100, 400); Mat src1 = randomMat(size, CV_32SC1); Mat src2 = randomMat(size, CV_32SC1); GpuMat_ d_src1(src1), d_src2(src2); GpuMat_ dst = maxVal_(abs_(d_src1 - d_src2)); float res; dst.download(_OutputArray(&res, 1)); double res_gold = cv::norm(src1, src2, NORM_INF); ASSERT_FLOAT_EQ(static_cast(res_gold), res); } TEST(MinMaxVal, GpuMat) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = minMaxVal_(d_src); float res[2]; dst.download(Mat(1, 2, CV_32FC1, res)); double res_gold[2]; cv::minMaxLoc(src, &res_gold[0], &res_gold[1]); ASSERT_FLOAT_EQ(static_cast(res_gold[0]), res[0]); ASSERT_FLOAT_EQ(static_cast(res_gold[1]), res[1]); } TEST(NonZeroCount, Accuracy) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1, 0, 5); GpuMat_ d_src(src); GpuMat_ dst1 = countNonZero_(d_src); GpuMat_ dst2 = sum_(cvt_(d_src) != 0); EXPECT_MAT_NEAR(dst1, dst2, 0.0); } TEST(ReduceToRow, Sum) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToRow_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 0, REDUCE_SUM, CV_32S); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST(ReduceToRow, Avg) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToRow_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 0, REDUCE_AVG, CV_32F); EXPECT_MAT_NEAR(dst_gold, dst, 1e-4); } TEST(ReduceToRow, Min) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToRow_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 0, REDUCE_MIN); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST(ReduceToRow, Max) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToRow_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 0, REDUCE_MAX); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST(ReduceToColumn, Sum) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToColumn_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 1, REDUCE_SUM, CV_32S); dst_gold.cols = dst_gold.rows; dst_gold.rows = 1; dst_gold.step = dst_gold.cols * dst_gold.elemSize(); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST(ReduceToColumn, Avg) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToColumn_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 1, REDUCE_AVG, CV_32F); dst_gold.cols = dst_gold.rows; dst_gold.rows = 1; dst_gold.step = dst_gold.cols * dst_gold.elemSize(); EXPECT_MAT_NEAR(dst_gold, dst, 1e-4); } TEST(ReduceToColumn, Min) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToColumn_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 1, REDUCE_MIN); dst_gold.cols = dst_gold.rows; dst_gold.rows = 1; dst_gold.step = dst_gold.cols * dst_gold.elemSize(); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST(ReduceToColumn, Max) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = reduceToColumn_ >(d_src); Mat dst_gold; cv::reduce(src, dst_gold, 1, REDUCE_MAX); dst_gold.cols = dst_gold.rows; dst_gold.rows = 1; dst_gold.step = dst_gold.cols * dst_gold.elemSize(); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } static void calcHistGold(const cv::Mat& src, cv::Mat& hist) { hist.create(1, 256, CV_32SC1); hist.setTo(cv::Scalar::all(0)); int* hist_row = hist.ptr(); for (int y = 0; y < src.rows; ++y) { const uchar* src_row = src.ptr(y); for (int x = 0; x < src.cols; ++x) ++hist_row[src_row[x]]; } } TEST(Histogram, GpuMat) { const Size size = randomSize(100, 400); Mat src = randomMat(size, CV_8UC1); GpuMat_ d_src(src); GpuMat_ dst = histogram_<256>(d_src); Mat dst_gold; calcHistGold(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); }