/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) cv::gpu::BFMatcher_GPU::BFMatcher_GPU(int) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::add(const std::vector&) { throw_nogpu(); } const std::vector& cv::gpu::BFMatcher_GPU::getTrainDescriptors() const { throw_nogpu(); return trainDescCollection; } void cv::gpu::BFMatcher_GPU::clear() { throw_nogpu(); } bool cv::gpu::BFMatcher_GPU::empty() const { throw_nogpu(); return true; } bool cv::gpu::BFMatcher_GPU::isMaskSupported() const { throw_nogpu(); return true; } void cv::gpu::BFMatcher_GPU::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::matchDownload(const GpuMat&, const GpuMat&, std::vector&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::matchConvert(const Mat&, const Mat&, std::vector&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::match(const GpuMat&, const GpuMat&, std::vector&, const GpuMat&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::makeGpuCollection(GpuMat&, GpuMat&, const std::vector&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::matchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::matchConvert(const Mat&, const Mat&, const Mat&, std::vector&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::match(const GpuMat&, std::vector&, const std::vector&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatchConvert(const Mat&, const Mat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector >&, int, const GpuMat&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatch2Collection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatch2Download(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatch2Convert(const Mat&, const Mat&, const Mat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::knnMatch(const GpuMat&, std::vector< std::vector >&, int, const std::vector&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatchConvert(const Mat&, const Mat&, const Mat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector >&, float, const GpuMat&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatchCollection(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const std::vector&, Stream&) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatchConvert(const Mat&, const Mat&, const Mat&, const Mat&, std::vector< std::vector >&, bool) { throw_nogpu(); } void cv::gpu::BFMatcher_GPU::radiusMatch(const GpuMat&, std::vector< std::vector >&, float, const std::vector&, bool) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace device { namespace bf_match { template void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, cudaStream_t stream); template void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, cudaStream_t stream); template void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, cudaStream_t stream); template void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, cudaStream_t stream); template void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, cudaStream_t stream); template void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, cudaStream_t stream); } namespace bf_knnmatch { template void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, cudaStream_t stream); template void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, cudaStream_t stream); template void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, cudaStream_t stream); template void match2L1_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, cudaStream_t stream); template void match2L2_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, cudaStream_t stream); template void match2Hamming_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, cudaStream_t stream); } namespace bf_radius_match { template void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); template void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); template void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); template void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); template void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); template void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); } }}} //////////////////////////////////////////////////////////////////// // Train collection cv::gpu::BFMatcher_GPU::BFMatcher_GPU(int norm_) : norm(norm_) { } void cv::gpu::BFMatcher_GPU::add(const std::vector& descCollection) { trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end()); } const std::vector& cv::gpu::BFMatcher_GPU::getTrainDescriptors() const { return trainDescCollection; } void cv::gpu::BFMatcher_GPU::clear() { trainDescCollection.clear(); } bool cv::gpu::BFMatcher_GPU::empty() const { return trainDescCollection.empty(); } bool cv::gpu::BFMatcher_GPU::isMaskSupported() const { return true; } //////////////////////////////////////////////////////////////////// // Match void cv::gpu::BFMatcher_GPU::matchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask, Stream& stream) { if (query.empty() || train.empty()) return; using namespace cv::gpu::device::bf_match; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu, 0/*matchL1_gpu*/, matchL1_gpu, matchL1_gpu, matchL1_gpu, matchL1_gpu }; static const caller_t callersL2[] = { 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, matchL2_gpu }; static const caller_t callersHamming[] = { matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/ }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.cols == query.cols && train.type() == query.type()); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; const int nQuery = query.rows; ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32F, distance); caller_t func = callers[query.depth()]; CV_Assert(func != 0); func(query, train, mask, trainIdx, distance, StreamAccessor::getStream(stream)); } void cv::gpu::BFMatcher_GPU::matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector& matches) { if (trainIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat distanceCPU(distance); matchConvert(trainIdxCPU, distanceCPU, matches); } void cv::gpu::BFMatcher_GPU::matchConvert(const Mat& trainIdx, const Mat& distance, std::vector& matches) { if (trainIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols); const int nQuery = trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int* trainIdx_ptr = trainIdx.ptr(); const float* distance_ptr = distance.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr) { int train_idx = *trainIdx_ptr; if (train_idx == -1) continue; float distance_local = *distance_ptr; DMatch m(queryIdx, train_idx, 0, distance_local); matches.push_back(m); } } void cv::gpu::BFMatcher_GPU::match(const GpuMat& query, const GpuMat& train, std::vector& matches, const GpuMat& mask) { GpuMat trainIdx, distance; matchSingle(query, train, trainIdx, distance, mask); matchDownload(trainIdx, distance, matches); } void cv::gpu::BFMatcher_GPU::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector& masks) { if (empty()) return; if (masks.empty()) { Mat trainCollectionCPU(1, static_cast(trainDescCollection.size()), CV_8UC(sizeof(PtrStepSzb))); PtrStepSzb* trainCollectionCPU_ptr = trainCollectionCPU.ptr(); for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr) *trainCollectionCPU_ptr = trainDescCollection[i]; trainCollection.upload(trainCollectionCPU); maskCollection.release(); } else { CV_Assert(masks.size() == trainDescCollection.size()); Mat trainCollectionCPU(1, static_cast(trainDescCollection.size()), CV_8UC(sizeof(PtrStepSzb))); Mat maskCollectionCPU(1, static_cast(trainDescCollection.size()), CV_8UC(sizeof(PtrStepb))); PtrStepSzb* trainCollectionCPU_ptr = trainCollectionCPU.ptr(); PtrStepb* maskCollectionCPU_ptr = maskCollectionCPU.ptr(); for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr, ++maskCollectionCPU_ptr) { const GpuMat& train = trainDescCollection[i]; const GpuMat& mask = masks[i]; CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == train.rows)); *trainCollectionCPU_ptr = train; *maskCollectionCPU_ptr = mask; } trainCollection.upload(trainCollectionCPU); maskCollection.upload(maskCollectionCPU); } } void cv::gpu::BFMatcher_GPU::matchCollection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& masks, Stream& stream) { if (query.empty() || trainCollection.empty()) return; using namespace cv::gpu::device::bf_match; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu, 0/*matchL1_gpu*/, matchL1_gpu, matchL1_gpu, matchL1_gpu, matchL1_gpu }; static const caller_t callersL2[] = { 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, matchL2_gpu }; static const caller_t callersHamming[] = { matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/ }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; const int nQuery = query.rows; ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx); ensureSizeIsEnough(1, nQuery, CV_32F, distance); caller_t func = callers[query.depth()]; CV_Assert(func != 0); func(query, trainCollection, masks, trainIdx, imgIdx, distance, StreamAccessor::getStream(stream)); } void cv::gpu::BFMatcher_GPU::matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector& matches) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat imgIdxCPU(imgIdx); Mat distanceCPU(distance); matchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, matches); } void cv::gpu::BFMatcher_GPU::matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector& matches) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.cols == trainIdx.cols); CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols); const int nQuery = trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int* trainIdx_ptr = trainIdx.ptr(); const int* imgIdx_ptr = imgIdx.ptr(); const float* distance_ptr = distance.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) { int _trainIdx = *trainIdx_ptr; if (_trainIdx == -1) continue; int _imgIdx = *imgIdx_ptr; float _distance = *distance_ptr; DMatch m(queryIdx, _trainIdx, _imgIdx, _distance); matches.push_back(m); } } void cv::gpu::BFMatcher_GPU::match(const GpuMat& query, std::vector& matches, const std::vector& masks) { GpuMat trainCollection; GpuMat maskCollection; makeGpuCollection(trainCollection, maskCollection, masks); GpuMat trainIdx, imgIdx, distance; matchCollection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection); matchDownload(trainIdx, imgIdx, distance, matches); } //////////////////////////////////////////////////////////////////// // KnnMatch void cv::gpu::BFMatcher_GPU::knnMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask, Stream& stream) { if (query.empty() || train.empty()) return; using namespace cv::gpu::device::bf_knnmatch; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu, 0/*matchL1_gpu*/, matchL1_gpu, matchL1_gpu, matchL1_gpu, matchL1_gpu }; static const caller_t callersL2[] = { 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, matchL2_gpu }; static const caller_t callersHamming[] = { matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/ }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; const int nQuery = query.rows; const int nTrain = train.rows; if (k == 2) { ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); } else { ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx); ensureSizeIsEnough(nQuery, k, CV_32F, distance); ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist); } if (stream) stream.enqueueMemSet(trainIdx, Scalar::all(-1)); else trainIdx.setTo(Scalar::all(-1)); caller_t func = callers[query.depth()]; CV_Assert(func != 0); func(query, train, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream)); } void cv::gpu::BFMatcher_GPU::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat distanceCPU(distance); knnMatchConvert(trainIdxCPU, distanceCPU, matches, compactResult); } void cv::gpu::BFMatcher_GPU::knnMatchConvert(const Mat& trainIdx, const Mat& distance, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC2 || trainIdx.type() == CV_32SC1); CV_Assert(distance.type() == CV_32FC2 || distance.type() == CV_32FC1); CV_Assert(distance.size() == trainIdx.size()); CV_Assert(trainIdx.isContinuous() && distance.isContinuous()); const int nQuery = trainIdx.type() == CV_32SC2 ? trainIdx.cols : trainIdx.rows; const int k = trainIdx.type() == CV_32SC2 ? 2 :trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int* trainIdx_ptr = trainIdx.ptr(); const float* distance_ptr = distance.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { matches.push_back(std::vector()); std::vector& curMatches = matches.back(); curMatches.reserve(k); for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr) { int _trainIdx = *trainIdx_ptr; if (_trainIdx != -1) { float _distance = *distance_ptr; DMatch m(queryIdx, _trainIdx, 0, _distance); curMatches.push_back(m); } } if (compactResult && curMatches.empty()) matches.pop_back(); } } void cv::gpu::BFMatcher_GPU::knnMatch(const GpuMat& query, const GpuMat& train, std::vector< std::vector >& matches, int k, const GpuMat& mask, bool compactResult) { GpuMat trainIdx, distance, allDist; knnMatchSingle(query, train, trainIdx, distance, allDist, k, mask); knnMatchDownload(trainIdx, distance, matches, compactResult); } void cv::gpu::BFMatcher_GPU::knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection, Stream& stream) { if (query.empty() || trainCollection.empty()) return; using namespace cv::gpu::device::bf_knnmatch; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, cudaStream_t stream); static const caller_t callersL1[] = { match2L1_gpu, 0/*match2L1_gpu*/, match2L1_gpu, match2L1_gpu, match2L1_gpu, match2L1_gpu }; static const caller_t callersL2[] = { 0/*match2L2_gpu*/, 0/*match2L2_gpu*/, 0/*match2L2_gpu*/, 0/*match2L2_gpu*/, 0/*match2L2_gpu*/, match2L2_gpu }; static const caller_t callersHamming[] = { match2Hamming_gpu, 0/*match2Hamming_gpu*/, match2Hamming_gpu, 0/*match2Hamming_gpu*/, match2Hamming_gpu, 0/*match2Hamming_gpu*/ }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; const int nQuery = query.rows; ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); if (stream) stream.enqueueMemSet(trainIdx, Scalar::all(-1)); else trainIdx.setTo(Scalar::all(-1)); caller_t func = callers[query.depth()]; CV_Assert(func != 0); func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, StreamAccessor::getStream(stream)); } void cv::gpu::BFMatcher_GPU::knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat imgIdxCPU(imgIdx); Mat distanceCPU(distance); knnMatch2Convert(trainIdxCPU, imgIdxCPU, distanceCPU, matches, compactResult); } void cv::gpu::BFMatcher_GPU::knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC2); CV_Assert(imgIdx.type() == CV_32SC2 && imgIdx.cols == trainIdx.cols); CV_Assert(distance.type() == CV_32FC2 && distance.cols == trainIdx.cols); const int nQuery = trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int* trainIdx_ptr = trainIdx.ptr(); const int* imgIdx_ptr = imgIdx.ptr(); const float* distance_ptr = distance.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { matches.push_back(std::vector()); std::vector& curMatches = matches.back(); curMatches.reserve(2); for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) { int _trainIdx = *trainIdx_ptr; if (_trainIdx != -1) { int _imgIdx = *imgIdx_ptr; float _distance = *distance_ptr; DMatch m(queryIdx, _trainIdx, _imgIdx, _distance); curMatches.push_back(m); } } if (compactResult && curMatches.empty()) matches.pop_back(); } } namespace { struct ImgIdxSetter { explicit inline ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {} inline void operator()(DMatch& m) const {m.imgIdx = imgIdx;} int imgIdx; }; } void cv::gpu::BFMatcher_GPU::knnMatch(const GpuMat& query, std::vector< std::vector >& matches, int k, const std::vector& masks, bool compactResult) { if (k == 2) { GpuMat trainCollection; GpuMat maskCollection; makeGpuCollection(trainCollection, maskCollection, masks); GpuMat trainIdx, imgIdx, distance; knnMatch2Collection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection); knnMatch2Download(trainIdx, imgIdx, distance, matches); } else { if (query.empty() || empty()) return; std::vector< std::vector > curMatches; std::vector temp; temp.reserve(2 * k); matches.resize(query.rows); for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&std::vector::reserve), k)); for (size_t imgIdx = 0, size = trainDescCollection.size(); imgIdx < size; ++imgIdx) { knnMatch(query, trainDescCollection[imgIdx], curMatches, k, masks.empty() ? GpuMat() : masks[imgIdx]); for (int queryIdx = 0; queryIdx < query.rows; ++queryIdx) { std::vector& localMatch = curMatches[queryIdx]; std::vector& globalMatch = matches[queryIdx]; for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(static_cast(imgIdx))); temp.clear(); merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp)); globalMatch.clear(); const size_t count = std::min((size_t)k, temp.size()); copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch)); } } if (compactResult) { std::vector< std::vector >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&std::vector::empty)); matches.erase(new_end, matches.end()); } } } //////////////////////////////////////////////////////////////////// // RadiusMatch void cv::gpu::BFMatcher_GPU::radiusMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const GpuMat& mask, Stream& stream) { if (query.empty() || train.empty()) return; using namespace cv::gpu::device::bf_radius_match; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu, 0/*matchL1_gpu*/, matchL1_gpu, matchL1_gpu, matchL1_gpu, matchL1_gpu }; static const caller_t callersL2[] = { 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, matchL2_gpu }; static const caller_t callersHamming[] = { matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/ }; const int nQuery = query.rows; const int nTrain = train.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size())); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance); } if (stream) stream.enqueueMemSet(nMatches, Scalar::all(0)); else nMatches.setTo(Scalar::all(0)); caller_t func = callers[query.depth()]; CV_Assert(func != 0); func(query, train, maxDistance, mask, trainIdx, distance, nMatches, StreamAccessor::getStream(stream)); } void cv::gpu::BFMatcher_GPU::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || distance.empty() || nMatches.empty()) return; Mat trainIdxCPU(trainIdx); Mat distanceCPU(distance); Mat nMatchesCPU(nMatches); radiusMatchConvert(trainIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult); } void cv::gpu::BFMatcher_GPU::radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || distance.empty() || nMatches.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows); const int nQuery = trainIdx.rows; matches.clear(); matches.reserve(nQuery); const int* nMatches_ptr = nMatches.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { const int* trainIdx_ptr = trainIdx.ptr(queryIdx); const float* distance_ptr = distance.ptr(queryIdx); const int nMatched = std::min(nMatches_ptr[queryIdx], trainIdx.cols); if (nMatched == 0) { if (!compactResult) matches.push_back(std::vector()); continue; } matches.push_back(std::vector(nMatched)); std::vector& curMatches = matches.back(); for (int i = 0; i < nMatched; ++i, ++trainIdx_ptr, ++distance_ptr) { int _trainIdx = *trainIdx_ptr; float _distance = *distance_ptr; DMatch m(queryIdx, _trainIdx, 0, _distance); curMatches[i] = m; } sort(curMatches.begin(), curMatches.end()); } } void cv::gpu::BFMatcher_GPU::radiusMatch(const GpuMat& query, const GpuMat& train, std::vector< std::vector >& matches, float maxDistance, const GpuMat& mask, bool compactResult) { GpuMat trainIdx, distance, nMatches; radiusMatchSingle(query, train, trainIdx, distance, nMatches, maxDistance, mask); radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult); } void cv::gpu::BFMatcher_GPU::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const std::vector& masks, Stream& stream) { if (query.empty() || empty()) return; using namespace cv::gpu::device::bf_radius_match; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz& nMatches, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu, 0/*matchL1_gpu*/, matchL1_gpu, matchL1_gpu, matchL1_gpu, matchL1_gpu }; static const caller_t callersL2[] = { 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, 0/*matchL2_gpu*/, matchL2_gpu }; static const caller_t callersHamming[] = { matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/, matchHamming_gpu, 0/*matchHamming_gpu*/ }; const int nQuery = query.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size())); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, imgIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance); } if (stream) stream.enqueueMemSet(nMatches, Scalar::all(0)); else nMatches.setTo(Scalar::all(0)); caller_t func = callers[query.depth()]; CV_Assert(func != 0); std::vector trains_(trainDescCollection.begin(), trainDescCollection.end()); std::vector masks_(masks.begin(), masks.end()); func(query, &trains_[0], static_cast(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0], trainIdx, imgIdx, distance, nMatches, StreamAccessor::getStream(stream)); } void cv::gpu::BFMatcher_GPU::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty()) return; Mat trainIdxCPU(trainIdx); Mat imgIdxCPU(imgIdx); Mat distanceCPU(distance); Mat nMatchesCPU(nMatches); radiusMatchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult); } void cv::gpu::BFMatcher_GPU::radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches, std::vector< std::vector >& matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.size() == trainIdx.size()); CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows); const int nQuery = trainIdx.rows; matches.clear(); matches.reserve(nQuery); const int* nMatches_ptr = nMatches.ptr(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { const int* trainIdx_ptr = trainIdx.ptr(queryIdx); const int* imgIdx_ptr = imgIdx.ptr(queryIdx); const float* distance_ptr = distance.ptr(queryIdx); const int nMatched = std::min(nMatches_ptr[queryIdx], trainIdx.cols); if (nMatched == 0) { if (!compactResult) matches.push_back(std::vector()); continue; } matches.push_back(std::vector()); std::vector& curMatches = matches.back(); curMatches.reserve(nMatched); for (int i = 0; i < nMatched; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) { int _trainIdx = *trainIdx_ptr; int _imgIdx = *imgIdx_ptr; float _distance = *distance_ptr; DMatch m(queryIdx, _trainIdx, _imgIdx, _distance); curMatches.push_back(m); } sort(curMatches.begin(), curMatches.end()); } } void cv::gpu::BFMatcher_GPU::radiusMatch(const GpuMat& query, std::vector< std::vector >& matches, float maxDistance, const std::vector& masks, bool compactResult) { GpuMat trainIdx, imgIdx, distance, nMatches; radiusMatchCollection(query, trainIdx, imgIdx, distance, nMatches, maxDistance, masks); radiusMatchDownload(trainIdx, imgIdx, distance, nMatches, matches, compactResult); } #endif /* !defined (HAVE_CUDA) */