// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #ifdef HAVE_INF_ENGINE #include // // Synchronize headers include statements with src/op_inf_engine.hpp // //#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE //there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wdeprecated-declarations" #endif #ifdef _MSC_VER #pragma warning(disable: 4996) // was declared deprecated #endif #if defined(__GNUC__) #pragma GCC visibility push(default) #endif #include #include #include #if defined(__GNUC__) #pragma GCC visibility pop #endif namespace opencv_test { namespace { static void initDLDTDataPath() { #ifndef WINRT static bool initialized = false; if (!initialized) { #if INF_ENGINE_RELEASE <= 2018050000 const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR"); if (dldtTestDataPath) cvtest::addDataSearchPath(dldtTestDataPath); #else const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH"); if (omzDataPath) cvtest::addDataSearchPath(omzDataPath); const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH"); if (dnnDataPath) cvtest::addDataSearchPath(std::string(dnnDataPath) + "/omz_intel_models"); #endif initialized = true; } #endif } using namespace cv; using namespace cv::dnn; using namespace InferenceEngine; struct OpenVINOModelTestCaseInfo { const char* modelPathFP32; const char* modelPathFP16; }; static const std::map& getOpenVINOTestModels() { static std::map g_models { #if INF_ENGINE_RELEASE >= 2018050000 // layout is defined by open_model_zoo/model_downloader // Downloaded using these parameters for Open Model Zoo downloader (2019R1): // ./downloader.py -o ${OPENCV_DNN_TEST_DATA_PATH}/omz_intel_models --cache_dir ${OPENCV_DNN_TEST_DATA_PATH}/.omz_cache/ \ // --name face-person-detection-retail-0002,face-person-detection-retail-0002-fp16,age-gender-recognition-retail-0013,age-gender-recognition-retail-0013-fp16,head-pose-estimation-adas-0001,head-pose-estimation-adas-0001-fp16,person-detection-retail-0002,person-detection-retail-0002-fp16,vehicle-detection-adas-0002,vehicle-detection-adas-0002-fp16 { "age-gender-recognition-retail-0013", { "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013", "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013-fp16" }}, { "face-person-detection-retail-0002", { "Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002", "Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002-fp16" }}, { "head-pose-estimation-adas-0001", { "Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001", "Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001-fp16" }}, { "person-detection-retail-0002", { "Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002", "Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002-fp16" }}, { "vehicle-detection-adas-0002", { "Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002", "Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002-fp16" }}, #endif #if INF_ENGINE_RELEASE >= 2020010000 // Downloaded using these parameters for Open Model Zoo downloader (2020.1): // ./downloader.py -o ${OPENCV_DNN_TEST_DATA_PATH}/omz_intel_models --cache_dir ${OPENCV_DNN_TEST_DATA_PATH}/.omz_cache/ \ // --name person-detection-retail-0013 { "person-detection-retail-0013", { // IRv10 "intel/person-detection-retail-0013/FP32/person-detection-retail-0013", "intel/person-detection-retail-0013/FP16/person-detection-retail-0013" }}, #endif }; return g_models; } static const std::vector getOpenVINOTestModelsList() { std::vector result; const std::map& models = getOpenVINOTestModels(); for (const auto& it : models) result.push_back(it.first); return result; } static inline void genData(const InferenceEngine::TensorDesc& desc, Mat& m, Blob::Ptr& dataPtr) { const std::vector& dims = desc.getDims(); m.create(std::vector(dims.begin(), dims.end()), CV_32F); randu(m, -1, 1); dataPtr = make_shared_blob(desc, (float*)m.data); } void runIE(Target target, const std::string& xmlPath, const std::string& binPath, std::map& inputsMap, std::map& outputsMap) { CNNNetReader reader; reader.ReadNetwork(xmlPath); reader.ReadWeights(binPath); CNNNetwork net = reader.getNetwork(); std::string device_name; #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000) Core ie; #else InferenceEnginePluginPtr enginePtr; InferencePlugin plugin; #endif ExecutableNetwork netExec; InferRequest infRequest; try { switch (target) { case DNN_TARGET_CPU: device_name = "CPU"; break; case DNN_TARGET_OPENCL: case DNN_TARGET_OPENCL_FP16: device_name = "GPU"; break; case DNN_TARGET_MYRIAD: device_name = "MYRIAD"; break; case DNN_TARGET_FPGA: device_name = "FPGA"; break; default: CV_Error(Error::StsNotImplemented, "Unknown target"); }; #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000) auto dispatcher = InferenceEngine::PluginDispatcher({""}); enginePtr = dispatcher.getPluginByDevice(device_name); #endif if (target == DNN_TARGET_CPU || target == DNN_TARGET_FPGA) { std::string suffixes[] = {"_avx2", "_sse4", ""}; bool haveFeature[] = { checkHardwareSupport(CPU_AVX2), checkHardwareSupport(CPU_SSE4_2), true }; for (int i = 0; i < 3; ++i) { if (!haveFeature[i]) continue; #ifdef _WIN32 std::string libName = "cpu_extension" + suffixes[i] + ".dll"; #elif defined(__APPLE__) std::string libName = "libcpu_extension" + suffixes[i] + ".dylib"; #else std::string libName = "libcpu_extension" + suffixes[i] + ".so"; #endif // _WIN32 try { IExtensionPtr extension = make_so_pointer(libName); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000) ie.AddExtension(extension, device_name); #else enginePtr->AddExtension(extension, 0); #endif break; } catch(...) {} } // Some of networks can work without a library of extra layers. } #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000) netExec = ie.LoadNetwork(net, device_name); #else plugin = InferencePlugin(enginePtr); netExec = plugin.LoadNetwork(net, {}); #endif infRequest = netExec.CreateInferRequest(); } catch (const std::exception& ex) { CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); } // Fill input blobs. inputsMap.clear(); BlobMap inputBlobs; for (auto& it : net.getInputsInfo()) { genData(it.second->getTensorDesc(), inputsMap[it.first], inputBlobs[it.first]); } infRequest.SetInput(inputBlobs); // Fill output blobs. outputsMap.clear(); BlobMap outputBlobs; for (auto& it : net.getOutputsInfo()) { genData(it.second->getTensorDesc(), outputsMap[it.first], outputBlobs[it.first]); } infRequest.SetOutput(outputBlobs); infRequest.Infer(); } void runCV(Backend backendId, Target targetId, const std::string& xmlPath, const std::string& binPath, const std::map& inputsMap, std::map& outputsMap) { Net net = readNet(xmlPath, binPath); for (auto& it : inputsMap) net.setInput(it.second, it.first); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); std::vector outNames = net.getUnconnectedOutLayersNames(); std::vector outs; net.forward(outs, outNames); outputsMap.clear(); EXPECT_EQ(outs.size(), outNames.size()); for (int i = 0; i < outs.size(); ++i) { EXPECT_TRUE(outputsMap.insert({outNames[i], outs[i]}).second); } } typedef TestWithParam, std::string> > DNNTestOpenVINO; TEST_P(DNNTestOpenVINO, models) { initDLDTDataPath(); const Backend backendId = get<0>(get<0>(GetParam())); const Target targetId = get<1>(get<0>(GetParam())); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API); else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); else FAIL() << "Unknown backendId"; std::string modelName = get<1>(GetParam()); bool isFP16 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD); const std::map& models = getOpenVINOTestModels(); const auto it = models.find(modelName); ASSERT_TRUE(it != models.end()) << modelName; OpenVINOModelTestCaseInfo modelInfo = it->second; std::string modelPath = isFP16 ? modelInfo.modelPathFP16 : modelInfo.modelPathFP32; std::string xmlPath = findDataFile(modelPath + ".xml", false); std::string binPath = findDataFile(modelPath + ".bin", false); std::map inputsMap; std::map ieOutputsMap, cvOutputsMap; // Single Myriad device cannot be shared across multiple processes. if (targetId == DNN_TARGET_MYRIAD) resetMyriadDevice(); runIE(targetId, xmlPath, binPath, inputsMap, ieOutputsMap); runCV(backendId, targetId, xmlPath, binPath, inputsMap, cvOutputsMap); double eps = 0; #if INF_ENGINE_VER_MAJOR_GE(2020010000) if (targetId == DNN_TARGET_CPU && checkHardwareSupport(CV_CPU_AVX_512F)) eps = 1e-5; #endif EXPECT_EQ(ieOutputsMap.size(), cvOutputsMap.size()); for (auto& srcIt : ieOutputsMap) { auto dstIt = cvOutputsMap.find(srcIt.first); CV_Assert(dstIt != cvOutputsMap.end()); double normInf = cvtest::norm(srcIt.second, dstIt->second, cv::NORM_INF); EXPECT_LE(normInf, eps) << "output=" << srcIt.first; } } INSTANTIATE_TEST_CASE_P(/**/, DNNTestOpenVINO, Combine(dnnBackendsAndTargetsIE(), testing::ValuesIn(getOpenVINOTestModelsList()) ) ); typedef TestWithParam DNNTestHighLevelAPI; TEST_P(DNNTestHighLevelAPI, predict) { initDLDTDataPath(); Target target = (dnn::Target)(int)GetParam(); bool isFP16 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD); OpenVINOModelTestCaseInfo modelInfo = getOpenVINOTestModels().find("age-gender-recognition-retail-0013")->second; std::string modelPath = isFP16 ? modelInfo.modelPathFP16 : modelInfo.modelPathFP32; std::string xmlPath = findDataFile(modelPath + ".xml"); std::string binPath = findDataFile(modelPath + ".bin"); Model model(xmlPath, binPath); Mat frame = imread(findDataFile("dnn/googlenet_1.png")); std::vector outs; model.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE); model.setPreferableTarget(target); model.predict(frame, outs); Net net = readNet(xmlPath, binPath); Mat input = blobFromImage(frame, 1.0, Size(62, 62)); net.setInput(input); net.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE); net.setPreferableTarget(target); std::vector outNames = net.getUnconnectedOutLayersNames(); std::vector refs; net.forward(refs, outNames); CV_Assert(refs.size() == outs.size()); for (int i = 0; i < refs.size(); ++i) normAssert(outs[i], refs[i]); } INSTANTIATE_TEST_CASE_P(/**/, DNNTestHighLevelAPI, testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE)) ); }} #endif // HAVE_INF_ENGINE